1
|
Jonnalagedda P, Weinberg B, Min TL, Bhanu S, Bhanu B. Computational modeling of tumor invasion from limited and diverse data in Glioblastoma. Comput Med Imaging Graph 2024; 117:102436. [PMID: 39342741 DOI: 10.1016/j.compmedimag.2024.102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/25/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
For diseases with high morbidity rates such as Glioblastoma Multiforme, the prognostic and treatment planning pipeline requires a comprehensive analysis of imaging, clinical, and molecular data. Many mutations have been shown to correlate strongly with the median survival rate and response to therapy of patients. Studies have demonstrated that these mutations manifest as specific visual biomarkers in tumor imaging modalities such as MRI. To minimize the number of invasive procedures on a patient and for the overall resource optimization for the prognostic and treatment planning process, the correlation of imaging and molecular features has garnered much interest. While the tumor mass is the most significant feature, the impacted tissue surrounding the tumor is also a significant biomarker contributing to the visual manifestation of mutations - which has not been studied as extensively. The pattern of tumor growth impacts the surrounding tissue accordingly, which is a reflection of tumor properties as well. Modeling how the tumor growth impacts the surrounding tissue can reveal important information about the patterns of tumor enhancement, which in turn has significant diagnostic and prognostic value. This paper presents the first work to automate the computational modeling of the impacted tissue surrounding the tumor using generative deep learning. The paper isolates and quantifies the impact of the Tumor Invasion (TI) on surrounding tissue based on change in mutation status, subsequently assessing its prognostic value. Furthermore, a TI Generative Adversarial Network (TI-GAN) is proposed to model the tumor invasion properties. Extensive qualitative and quantitative analyses, cross-dataset testing, and radiologist blind tests are carried out to demonstrate that TI-GAN can realistically model the tumor invasion under practical challenges of medical datasets such as limited data and high intra-class heterogeneity.
Collapse
Affiliation(s)
- Padmaja Jonnalagedda
- Department of Electrical and Computer Engineering, University of California, Riverside, United States of America.
| | - Brent Weinberg
- Department of Radiology and Imaging Sciences, Emory University, Atlanta GA, United States of America
| | - Taejin L Min
- Department of Radiology and Imaging Sciences, Emory University, Atlanta GA, United States of America
| | - Shiv Bhanu
- Department of Radiology, Riverside Community Hospital, Riverside CA, United States of America
| | - Bir Bhanu
- Department of Electrical and Computer Engineering, University of California, Riverside, United States of America
| |
Collapse
|
2
|
Gao J, Liu Z, Pan H, Cao X, Kan Y, Wen Z, Chen S, Wen M, Zhang L. Preoperative Discrimination of CDKN2A/B Homozygous Deletion Status in Isocitrate Dehydrogenase-Mutant Astrocytoma: A Deep Learning-Based Radiomics Model Using MRI. J Magn Reson Imaging 2024; 59:1655-1664. [PMID: 37555723 DOI: 10.1002/jmri.28945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion has been verified as an independent and critical biomarker of negative prognosis and short survival in isocitrate dehydrogenase (IDH)-mutant astrocytoma. Therefore, noninvasive and accurate discrimination of CDKN2A/B homozygous deletion status is essential for the clinical management of IDH-mutant astrocytoma patients. PURPOSE To develop a noninvasive, robust preoperative model based on MR image features for discriminating CDKN2A/B homozygous deletion status of IDH-mutant astrocytoma. STUDY TYPE Retrospective. POPULATION Two hundred fifty-one patients: 107 patients with CDKN2A/B homozygous deletion and 144 patients without CDKN2A/B homozygous deletion. FIELD STRENGTH/SEQUENCE 3.0 T/1.5 T: Contrast-enhanced T1-weighted spin-echo inversion recovery sequence (CE-T1WI) and T2-weighted fluid-attenuation spin-echo inversion recovery sequence (T2FLAIR). ASSESSMENT A total of 1106 radiomics and 1000 deep learning features extracted from CE-T1WI and T2FLAIR were used to develop models to discriminate the CDKN2A/B homozygous deletion status. Radiomics models, deep learning-based radiomics (DLR) models and the final integrated model combining radiomics features with deep learning features were developed and compared their preoperative discrimination performance. STATISTICAL TESTING Pearson chi-square test and Mann Whitney U test were used for assessing the statistical differences in patients' clinical characteristics. The Delong test compared the statistical differences of receiver operating characteristic (ROC) curves and area under the curve (AUC) of different models. The significance threshold is P < 0.05. RESULTS The final combined model (training AUC = 0.966; validation AUC = 0.935; test group: AUC = 0.943) outperformed the optimal models based on only radiomics or DLR features (training: AUC = 0.916 and 0.952; validation: AUC = 0.886 and 0.912; test group: AUC = 0.862 and 0.902). DATA CONCLUSION Whether based on a single sequence or a combination of two sequences, radiomics and DLR models have achieved promising performance in assessing CDKN2A/B homozygous deletion status. However, the final model combining both deep learning and radiomics features from CE-T1WI and T2FLAIR outperformed the optimal radiomics or DLR model. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Jueni Gao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi Liu
- Department of Nuclear Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Hongyu Pan
- College of Computer and Information Science, Southwest University, Chongqing, China
| | - Xu Cao
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yubo Kan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhipeng Wen
- Department of Radiology, Sichuan Cancer Hospital, Chengdu, China
| | - Shanxiong Chen
- College of Computer and Information Science, Southwest University, Chongqing, China
| | - Ming Wen
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liqiang Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Bhattacharya K, Rastogi S, Mahajan A. Post-treatment imaging of gliomas: challenging the existing dogmas. Clin Radiol 2024; 79:e376-e392. [PMID: 38123395 DOI: 10.1016/j.crad.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 10/23/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Gliomas are the commonest malignant central nervous system tumours in adults and imaging is the cornerstone of diagnosis, treatment, and post-treatment follow-up of these patients. With the ever-evolving treatment strategies post-treatment imaging and interpretation in glioma remains challenging, more so with the advent of anti-angiogenic drugs and immunotherapy, which can significantly alter the appearance in this setting, thus making interpretation of routine imaging findings such as contrast enhancement, oedema, and mass effect difficult to interpret. This review details the various methods of management of glioma including the upcoming novel therapies and their impact on imaging findings, with a comprehensive description of the imaging findings in conventional and advanced imaging techniques. A systematic appraisal for the existing and emerging techniques of imaging in these settings and their clinical application including various response assessment guidelines and artificial intelligence based response assessment will also be discussed.
Collapse
Affiliation(s)
- K Bhattacharya
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - S Rastogi
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - A Mahajan
- Department of imaging, The Clatterbridge Cancer Centre, NHS Foundation Trust, Pembroke Place, Liverpool L7 8YA, UK; University of Liverpool, Liverpool L69 3BX, UK.
| |
Collapse
|
4
|
Qureshi TA, Chen X, Xie Y, Murakami K, Sakatani T, Kita Y, Kobayashi T, Miyake M, Knott SRV, Li D, Rosser CJ, Furuya H. MRI/RNA-Seq-Based Radiogenomics and Artificial Intelligence for More Accurate Staging of Muscle-Invasive Bladder Cancer. Int J Mol Sci 2023; 25:88. [PMID: 38203254 PMCID: PMC10778815 DOI: 10.3390/ijms25010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Accurate staging of bladder cancer assists in identifying optimal treatment (e.g., transurethral resection vs. radical cystectomy vs. bladder preservation). However, currently, about one-third of patients are over-staged and one-third are under-staged. There is a pressing need for a more accurate staging modality to evaluate patients with bladder cancer to assist clinical decision-making. We hypothesize that MRI/RNA-seq-based radiogenomics and artificial intelligence can more accurately stage bladder cancer. A total of 40 magnetic resonance imaging (MRI) and matched formalin-fixed paraffin-embedded (FFPE) tissues were available for analysis. Twenty-eight (28) MRI and their matched FFPE tissues were available for training analysis, and 12 matched MRI and FFPE tissues were used for validation. FFPE samples were subjected to bulk RNA-seq, followed by bioinformatics analysis. In the radiomics, several hundred image-based features from bladder tumors in MRI were extracted and analyzed. Overall, the model obtained mean sensitivity, specificity, and accuracy of 94%, 88%, and 92%, respectively, in differentiating intra- vs. extra-bladder cancer. The proposed model demonstrated improvement in the three matrices by 17%, 33%, and 25% and 17%, 16%, and 17% as compared to the genetic- and radiomic-based models alone, respectively. The radiogenomics of bladder cancer provides insight into discriminative features capable of more accurately staging bladder cancer. Additional studies are underway.
Collapse
Affiliation(s)
- Touseef Ahmad Qureshi
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (T.A.Q.); (Y.X.); (D.L.)
- Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (X.C.); (S.R.V.K.)
| | - Xingyu Chen
- Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (X.C.); (S.R.V.K.)
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Yibin Xie
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (T.A.Q.); (Y.X.); (D.L.)
| | - Kaoru Murakami
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (K.M.); (T.S.)
- Department of Urology, Kyoto University, Kyoto 606-8507, Japan; (Y.K.); (T.K.)
| | - Toru Sakatani
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (K.M.); (T.S.)
| | - Yuki Kita
- Department of Urology, Kyoto University, Kyoto 606-8507, Japan; (Y.K.); (T.K.)
| | - Takashi Kobayashi
- Department of Urology, Kyoto University, Kyoto 606-8507, Japan; (Y.K.); (T.K.)
| | - Makito Miyake
- Department of Urology, Nara Medical University, Kashihara 634-8522, Japan;
| | - Simon R. V. Knott
- Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (X.C.); (S.R.V.K.)
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (K.M.); (T.S.)
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (T.A.Q.); (Y.X.); (D.L.)
| | - Charles J. Rosser
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (K.M.); (T.S.)
| | - Hideki Furuya
- Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (X.C.); (S.R.V.K.)
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (K.M.); (T.S.)
| |
Collapse
|