• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4642360)   Today's Articles (2107)   Subscriber (50497)
For: Yasaka K, Sato C, Hirakawa H, Fujita N, Kurokawa M, Watanabe Y, Kubo T, Abe O. Impact of deep learning on radiologists and radiology residents in detecting breast cancer on CT: a cross-vendor test study. Clin Radiol 2024;79:e41-e47. [PMID: 37872026 DOI: 10.1016/j.crad.2023.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/13/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
Number Cited by Other Article(s)
1
Yasaka K, Uehara S, Kato S, Watanabe Y, Tajima T, Akai H, Yoshioka N, Akahane M, Ohtomo K, Abe O, Kiryu S. Super-resolution Deep Learning Reconstruction Cervical Spine 1.5T MRI: Improved Interobserver Agreement in Evaluations of Neuroforaminal Stenosis Compared to Conventional Deep Learning Reconstruction. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024;37:2466-2473. [PMID: 38671337 PMCID: PMC11522216 DOI: 10.1007/s10278-024-01112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
2
Hamada A, Yasaka K, Hatano S, Kurokawa M, Inui S, Kubo T, Watanabe Y, Abe O. Deep-Learning Reconstruction of High-Resolution CT Improves Interobserver Agreement for the Evaluation of Pulmonary Fibrosis. Can Assoc Radiol J 2024;75:542-548. [PMID: 38293802 DOI: 10.1177/08465371241228468] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]  Open
3
Fujita N, Yasaka K, Hatano S, Sakamoto N, Kurokawa R, Abe O. Deep learning reconstruction for high-resolution computed tomography images of the temporal bone: comparison with hybrid iterative reconstruction. Neuroradiology 2024;66:1105-1112. [PMID: 38514472 DOI: 10.1007/s00234-024-03330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
4
Yasaka K, Kanzawa J, Nakaya M, Kurokawa R, Tajima T, Akai H, Yoshioka N, Akahane M, Ohtomo K, Abe O, Kiryu S. Super-resolution Deep Learning Reconstruction for 3D Brain MR Imaging: Improvement of Cranial Nerve Depiction and Interobserver Agreement in Evaluations of Neurovascular Conflict. Acad Radiol 2024:S1076-6332(24)00368-4. [PMID: 38897913 DOI: 10.1016/j.acra.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA