1
|
Namila F, Zhou T, Wang L, Jin M. Virus Filtration Development for Adeno-Associated Virus-Based Gene Therapy Products. Biotechnol J 2025; 20:e202400636. [PMID: 39778063 DOI: 10.1002/biot.202400636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Adeno-associated virus (AAV) vectors have become a leading platform for gene delivery. A major portion of gene therapy currently in clinical trials are AAV-based for a wide range of diseases. A commonly used method for AAV production is by mammalian or insect cell culture, with or without added viruses to introduce needed genetic elements for AAV production. There are potential risks of virus contamination from the production cell line, process residuals, or adventitious contamination in the production of biotherapeutics, including AAV-based gene therapy products; therefore, it is imperative to demonstrate that the drug substance manufacturing process has sufficient capability to clear process-related or adventitious viruses. In the AAV-based gene therapy manufacturing process, cell lysis, affinity chromatography, and ion exchange chromatography steps are often effective to inactivate or remove viruses. To increase the viral clearance robustness, virus filtration (VF) is increasingly recommended by regulatory agencies for gene therapy products as a dedicated viral clearance step in the downstream purification process. In the current study, two commercially available virus filters were evaluated in the context of AAV manufacturing. The filter throughput and process yield were assessed under different operational modes. Virus clearance performance was evaluated by spiking in Adenovirus type 5 (Adv-5) and Simian virus 40 (SV-40). The viral filters assessed in this study demonstrated manufacturable throughputs, acceptable process yields, and robust virus clearance capabilities for viruses greater than 40 nm.
Collapse
Affiliation(s)
- Fnu Namila
- Drug Substance Development, Spark Therapeutics, Inc., Philadelphia, USA
| | - Tianyi Zhou
- Drug Substance Development, Spark Therapeutics, Inc., Philadelphia, USA
| | - Lu Wang
- Drug Substance Development, Spark Therapeutics, Inc., Philadelphia, USA
| | - Mi Jin
- Drug Substance Development, Spark Therapeutics, Inc., Philadelphia, USA
| |
Collapse
|
2
|
Döring L, Winderl J, Kron M, Hubbuch J. Mechanistic modeling of minute virus of mice surrogate removal by anion exchange chromatography in micro scale. J Chromatogr A 2024; 1734:465261. [PMID: 39216284 DOI: 10.1016/j.chroma.2024.465261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/02/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
Biopharmaceutical products are often produced in Chinese hamster ovary (CHO) cell cultures that are vulnerable to virus infections. Therefore, it is a regulatory requirement that downstream purification steps for biopharmaceuticals can remove viruses from feedstocks. Anion exchange chromatography (AEX) is one of the downstream unit operations that is most frequently used for this purpose and claimed for its capability to remove viruses. However, the impact of various process parameters on virus removal by AEX is still not fully understood. Mechanistic modeling could be a promising way to approach this gap, as these models require comparatively few experiments for calibration. This makes them a valuable tool to improve understanding of viral clearance, especially since virus spiking studies are costly and time consuming. In this study, we present how the virus clearance of a MVM mock virus particle by Q Sepharose FF resin can be described by mechanistic modeling. A lumped kinetic model was combined with a steric mass action model and calibrated at micro scale using three linear gradient experiments and an incremental step elution gradient. The model was subsequently verified for its capability to predict the effect of different sodium chloride concentrations, as well as residence times, on virus clearance and was in good agreement with the LRVs of the verification runs. Overall, models like this could enhance the mechanistic understanding of viral clearance mechanisms and thereby contribute to the development of more efficient and safer biopharmaceutical downstream processes.
Collapse
Affiliation(s)
- Lukas Döring
- Process Science, Rentschler Biopharma SE, Erwin-Rentschler-Str. 21 88471 Laupheim, Germany; Karlsruhe Institute of Technology (KIT), Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Fritz-Haber-Weg 2 76131 Karlsruhe, Germany
| | - Johannes Winderl
- Process Science, Rentschler Biopharma SE, Erwin-Rentschler-Str. 21 88471 Laupheim, Germany
| | - Matthias Kron
- Process Science, Rentschler Biopharma SE, Erwin-Rentschler-Str. 21 88471 Laupheim, Germany
| | - Jürgen Hubbuch
- Karlsruhe Institute of Technology (KIT), Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Fritz-Haber-Weg 2 76131 Karlsruhe, Germany.
| |
Collapse
|
3
|
Liu N, Wu R. Risk management for viral clearance: A case study on adoption of platform validation approach and risk management of process changes. Biologicals 2024; 87:101786. [PMID: 39137462 DOI: 10.1016/j.biologicals.2024.101786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/03/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Viral clearance (VC) studies are routinely required prior to entering clinical trials or for commercial launch of biopharmaceuticals. With increasing prior knowledge and experience, platform validation can be used to eliminate some VC studies and such strategy has been updated into industry guidelines, such as ICH Q5A (R2). In addition, process changes can happen during life-cycle management of a product. In these circumstances, high-risk process parameters need to be identified and corresponding control strategies need to be defined to ensure viral safety of the product. This work describes the design of a science-based risk management tool and how this tool is employed for platform validation and process change scenarios.
Collapse
Affiliation(s)
- Na Liu
- Downstream Process Development (DSPD), WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China.
| | - Runze Wu
- Downstream Process Development (DSPD), WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China
| |
Collapse
|
4
|
Cai K, Anderson J, Utiger E, Ferreira G. Viral clearance capability of monoclonal antibody purification. Biologicals 2024; 85:101751. [PMID: 38387156 DOI: 10.1016/j.biologicals.2024.101751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Viral clearance steps are routinely included in monoclonal antibody purification processes to safeguard product from potential virus contamination. These steps are often experimentally studied using product-specific feeds and parameters for each project to demonstrate viral clearance capability. However, published evidence suggests that viral clearance capability of many of these steps are not significantly impacted by variations in feed material or process parameter within commonly used ranges. The current investigation confirms robust retrovirus inactivation by low pH treatment and parvovirus removal by second-generation virus filters, independent to individual antibody molecules. Our results also reveal robust retrovirus removal by flowthrough anion exchange chromatography, inside the limits of protein load and host cell protein content. The cumulative viral clearance capability from these steps leads to an excess clearance safety factor of 10,000-fold for endogenous retrovirus-like particles. These results further justify the use of prior knowledge-based modular viral clearance estimation as opposed to repetitive experimentation.
Collapse
Affiliation(s)
- Kang Cai
- Purification Process and Analytical Sciences, Biopharmaceutical Development, R&D, AstraZeneca, Gaithersburg, MD, 20878, USA.
| | - Jennifer Anderson
- Purification Process and Analytical Sciences, Biopharmaceutical Development, R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
| | - Etienne Utiger
- Purification Process and Analytical Sciences, Biopharmaceutical Development, R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
| | - Gisela Ferreira
- Purification Process and Analytical Sciences, Biopharmaceutical Development, R&D, AstraZeneca, Gaithersburg, MD, 20878, USA.
| |
Collapse
|
5
|
Anderson SM, Seto E, Chau D, Lee B, Vail A, Ding S, Voloshin A, Nagel M. Fiber chromatographic enabled process intensification increases monoclonal antibody product yield. Biotechnol Bioeng 2024; 121:757-770. [PMID: 37902763 DOI: 10.1002/bit.28584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/31/2023]
Abstract
The most straightforward method to increase monoclonal antibody (mAb) product yield is to complete the purification process in less steps. Here, three different fiber chromatographic devices were implemented using a holistic approach to intensify the mAb purification process and increase yield. Fiber protein A (proA) chromatography was first investigated, but traditional depth filtration was not sufficient in reducing the contaminant load as the fiber proA device prematurely fouled. Further experimentation revealed that chromatin aggregates were the most likely reason for the fiber fouling. To reduce levels of chromatin aggregates, a chromatographic clarification device (CCD) was incorporated into the process, resulting in single-stage clarification of harvested cell culture fluid and reduction of DNA levels. The CCD clarified pool was then successfully processed through the fiber proA device, fully realizing the productivity gains that the fiber technology offers. After the proA and viral inactivation neutralization (VIN) hold step, the purification process was further intensified using a novel single-use fiber-based polishing anion exchange (AEX) material that is capable of binding both soluble and insoluble contaminants. The three-stage fiber chromatographic purification process was compared to a legacy five-step process of dual-stage depth filtration, bead-based proA chromatography, post-VIN depth filtration, and bead-based AEX chromatography. The overall yield from the five-step process was 60%, while the fiber chromatographic-enabled intensified process had an overall yield of 70%. The impurity clearance of DNA and host cell protein (HCP) for both processes were within the regulatory specification (<100 ppm HCP, <1 ppb DNA). For the harvest of a 2000 L cell culture, the intensified process is expected to increase productivity by 2.5-fold at clarification, 50-fold at the proA step, and 1.6-fold in polishing. Relative to the legacy process, the intensified process would reduce buffer use by 1088 L and decrease overall process product mass intensity by 12.6%.
Collapse
Affiliation(s)
- Sean M Anderson
- 3M, Separation and Purification Sciences, Saint Paul, Minnesota, USA
| | - Elbert Seto
- Gilead, Protein Sciences, Foster City, California, USA
| | - David Chau
- 3M, Separation and Purification Sciences, Saint Paul, Minnesota, USA
| | - Brian Lee
- Gilead, Protein Sciences, Foster City, California, USA
| | - Andrew Vail
- 3M, Separation and Purification Sciences, Saint Paul, Minnesota, USA
| | - Sheng Ding
- Gilead, Protein Sciences, Foster City, California, USA
| | - Alexei Voloshin
- 3M, Separation and Purification Sciences, Saint Paul, Minnesota, USA
| | - Mark Nagel
- Gilead, Protein Sciences, Foster City, California, USA
| |
Collapse
|
6
|
Wieser A, Modrof J, Kreil TR. Protection of biomanufacturing processes from virus contamination through upstream virus filtration of cell culture media. Biotechnol Bioeng 2023; 120:2917-2924. [PMID: 37337932 DOI: 10.1002/bit.28473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Cell-based manufacturing processes have occasionally been exposed to adventitious viruses, leading to manufacturing interruptions and unstable supply situations. The rapid progress of advanced therapy medicinal products needs innovative approaches to avoid any unwelcome reminder of the universal presence of viruses. Here, we investigated upstream virus filtration as a clearance step for any product too complex for downstream interventions. Culture media virus filtration was investigated with respect to virus clearance capacities under extreme conditions such as high process feed loading (up to ~19,000 L/m²), long duration (up to 34 days), and multiple process interruptions (up to 21 h). The small nonenveloped Minute virus of mice was used as relevant target virus, and as worse-case challenge for the investigated virus filters with a stipulated pore-size of about 20 nm. Certain filters-especially of the newer second generation-were capable of effective virus clearance despite the harsh regimen they were subjected to. The biochemical parameters for un-spiked control runs showed the filters to have no measurable impact on the composition of the culture media. Based on these findings, this technology seems to be quite feasible for large volume premanufacturing process culture media preparations.
Collapse
Affiliation(s)
- Andreas Wieser
- Global Pathogen Safety, Takeda Manufacturing Austria AG, Vienna, Austria
| | - Jens Modrof
- Global Pathogen Safety, Takeda Manufacturing Austria AG, Vienna, Austria
| | - Thomas R Kreil
- Global Pathogen Safety, Takeda Manufacturing Austria AG, Vienna, Austria
| |
Collapse
|
7
|
Shirataki H, Matsumoto Y, Konoike F, Yamamoto S. Viral clearance in end-to-end integrated continuous process for mAb purification: Total flow-through integrated polishing on two columns connected to virus filtration. Biotechnol Bioeng 2023; 120:2977-2988. [PMID: 37288613 DOI: 10.1002/bit.28464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/14/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
There are few reports of the adoption of continuous processes in bioproduction, particularly the implementation of end-to-end continuous or integrated processes, due to difficulties such as feed adjustment and incorporating virus filtration. Here, we propose an end-to-end integrated continuous process for a monoclonal antibody (mAb) with three integrated process segments: upstream production processes with pool-less direct connection, pooled low pH virus inactivation with pH control and a total flow-through integrated polishing process in which two columns were directly connected with a virus filter. The pooled virus inactivation step defines the batch, and high impurities reduction and mAb recovery were achieved for batches conducted in succession. Viral clearance tests also confirmed robust virus reduction for the flow-through two-column chromatography and the virus filtration steps. Additionally, viral clearance tests with two different hollow fiber virus filters operated at flux ranging from 1.5 to 40 LMH (liters per effective surface area of filter in square meters per hour) confirmed robust virus reduction over these ranges. Complete clearance with virus logarithmic reduction value ≥4 was achieved even with a process pause at the lowest flux. The end-to-end integrated continuous process proposed in this study is amenable to production processes, and the investigated virus filters have excellent applicability to continuous processes conducted at constant flux.
Collapse
Affiliation(s)
- Hironobu Shirataki
- Scientific Affairs Group, Bioprocess Division, Asahi Kasei Medical Co., Ltd., Tokyo, Japan
| | | | - Fuminori Konoike
- Bio-Pharma Research Laboratories, Kaneka Corporation, Hyogo, Japan
| | - Shuichi Yamamoto
- Yamaguchi University Biomedical Engineering Center (YUBEC), Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
8
|
Suh D, Jin H, Park H, Lee C, Cho YH, Baek Y. Effect of protein fouling on filtrate flux and virus breakthrough behaviors during virus filtration process. Biotechnol Bioeng 2023. [PMID: 37144573 DOI: 10.1002/bit.28407] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 05/06/2023]
Abstract
Virus filtration process is used to ensure viral safety in the biopharmaceutical downstream processes with high virus removal capacity (i.e., >4 log10 ). However, it is still constrained by protein fouling, which results in reduced filtration capacity and possible virus breakthrough. This study investigated the effects of protein fouling on filtrate flux and virus breakthrough using commercial membranes that had different symmetricity, nominal pore size, and pore size gradients. Flux decay tendency due to protein fouling was influenced by hydrodynamic drag force and protein concentration. As the results of prediction with the classical fouling model, standard blocking was suitable for most virus filters. Undesired virus breakthrough was observed in the membranes having relatively a large pore diameter of the retentive region. The study found that elevated levels of protein solution reduced virus removal performance. However, the impact of prefouled membranes was minimal. These findings shed light on the factors that influence protein fouling during the virus filtration process of biopharmaceutical production.
Collapse
Affiliation(s)
- Dongwoo Suh
- School of Chemical and Biological Engineering, Seoul National University (SNU), Seoul, Republic of Korea
| | - Hoeun Jin
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - Hosik Park
- Green Carbon Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
- Department of Advanced Materials and Chemical Engineering, University of Science & Technology (UST), Daejeon, Yuseong-gu, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Seoul National University (SNU), Seoul, Republic of Korea
| | - Young Hoon Cho
- Green Carbon Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
- Department of Advanced Materials and Chemical Engineering, University of Science & Technology (UST), Daejeon, Yuseong-gu, Republic of Korea
| | - Youngbin Baek
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| |
Collapse
|
9
|
Raedts J, Kellenbach E. Quantitative Risk Evaluation of Adventitious Agents in Heparin. TH OPEN 2023; 7:e128-e132. [PMID: 37220491 PMCID: PMC10200340 DOI: 10.1055/s-0043-1768946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
Heparin is typically extracted from domestic pigs, which may carry zoonotic adventitious agents. Prion and viral safety cannot be assured by testing the active pharmaceutical ingredient itself; instead for the evaluation of the adventitious agent (i.e., viruses/prions) safety of heparin and heparinoid (e.g., Orgaran or Sulodexide) therapeutics, a risk assessment is required. An approach is presented which provides a quantitative estimation of the worst-case potential residual adventitious agent (i.e., GC/mL or ID 50 ) present in a maximum daily dose of heparin. This estimation is based on the input (determined by prevalence, titer, and amount of starting material to prepare a maximum daily dose) and validated reduction by the manufacturing process, resulting in an estimation of the worst-case potential level of adventitious agent present in a maximum daily dose. The merits of this quantitative, worst-case approach are evaluated. The approach described in this review provides a tool for a quantitative risk evaluation of the viral and prion safety of heparin.
Collapse
|
10
|
Suh D, Kim M, Lee C, Baek Y. Virus filtration in biopharmaceutical downstream processes: key factors and current limitations. SEPARATION & PURIFICATION REVIEWS 2022. [DOI: 10.1080/15422119.2022.2143379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Dongwoo Suh
- School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Process (ICP), Seoul National University (SNU), Gwanak-gu, Republic of Korea
| | - Mina Kim
- Department of Biotechnology, Institute of Basic Science, Sungshin Women’s University, Seoul, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Process (ICP), Seoul National University (SNU), Gwanak-gu, Republic of Korea
| | - Youngbin Baek
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| |
Collapse
|
11
|
Li Y. Viral removal by column chromatography in downstream processing of monoclonal antibodies. Protein Expr Purif 2022; 198:106131. [PMID: 35700957 DOI: 10.1016/j.pep.2022.106131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 10/18/2022]
Abstract
For monoclonal antibodies (mAbs) produced in mammalian cells, viral safety is a critical concern. The downstream process, in addition to removing other impurities, needs to ensure robust clearance (removal or inactivation) of potential endogenous and adventitious viruses. In general, Protein A and polishing chromatography steps all can provide certain level of virus removal. Chromatographic removal combined with virus inactivation and nanofiltration usually provides adequate virus clearance across the overall downstream process. This article reviews the virus clearance capability of commonly used column chromatography, with attention to possible interference of virus-mAb interaction on virus removal. In addition, the potential of using viral surrogate as a safe alternative to live virus for assessing viral clearance is briefly discussed.
Collapse
Affiliation(s)
- Yifeng Li
- Technology and Process Development (TPD), WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China.
| |
Collapse
|