1
|
Eesmaa A, Yu LY, Göös H, Nõges K, Kovaleva V, Hellman M, Zimmermann R, Jung M, Permi P, Varjosalo M, Lindholm P, Saarma M. The cytoprotective protein MANF promotes neuronal survival independently from its role as a GRP78 cofactor. J Biol Chem 2021; 296:100295. [PMID: 33460650 PMCID: PMC7949057 DOI: 10.1016/j.jbc.2021.100295] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-stress-regulated protein exhibiting cytoprotective properties through a poorly understood mechanism in various in vitro and in vivo models of neuronal and non-neuronal damage. Although initially characterized as a secreted neurotrophic factor for midbrain dopamine neurons, MANF has recently gained more interest for its intracellular role in regulating the ER homeostasis, including serving as a cofactor of the chaperone glucose-regulated protein 78 (GRP78). We aimed for a better understanding of the neuroprotective mechanisms of MANF. Here we show for the first time that MANF promotes the survival of ER-stressed neurons in vitro as a general unfolded protein response (UPR) regulator, affecting several UPR pathways simultaneously. Interestingly, MANF does not affect naïve neurons. We hypothesize that MANF regulates UPR signaling toward a mode more compatible with neuronal survival. Screening of MANF interacting proteins from two mammalian cell lines revealed a conserved interactome of 15 proteins including several ER chaperones such as GRP78, GRP170, protein disulfide isomerase family A member 1, and protein disulfide isomerase family A member 6. Further characterization confirmed previously published finding that MANF is a cofactor of GRP78 interacting with its nucleotide binding domain. Using microscale thermophoresis and nuclear magnetic resonance spectroscopy, we discovered that MANF is an ATP binding protein and that ATP blocks the MANF-GRP78 interaction. Interestingly, functional analysis of the antiapoptotic properties of MANF mutants in cultured neurons revealed divergent roles of MANF as a GRP78 cofactor and as an antiapoptotic regulator of UPR. We conclude that the co-factor type interaction with GRP78 is dispensable for the survival-promoting activity of MANF in neurons.
Collapse
Affiliation(s)
- Ave Eesmaa
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Li-Ying Yu
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Helka Göös
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kristofer Nõges
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Vera Kovaleva
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Maarit Hellman
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Martin Jung
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Perttu Permi
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland; Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Päivi Lindholm
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Gorelik D, Lin YC, Briceno-Strocchia AI, Taylor MS. Diarylborinic Acid-Catalyzed, Site-Selective Sulfation of Carbohydrate Derivatives. J Org Chem 2019; 84:900-908. [PMID: 30620184 DOI: 10.1021/acs.joc.8b02792] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sulfated carbohydrates have been implicated in diverse biological processes, with the position and extent of sulfation of a glycoside often playing important roles in determining the affinity and specificity of its binding to a biomolecular partner. Methods for the site-selective introduction of sulfate groups to carbohydrates are thus of interest. Here, we describe the development of a diarylborinic acid-catalyzed protocol for selective sulfation of pyranoside derivatives at the equatorial position of a cis-1,2-diol group. This method, which employs the sulfur trioxide-trimethylamine complex as the electrophile, has been employed for installation of a sulfate group at the 3-position of a range of galacto- and mannopyranosides, including substrates having a free primary OH group. By using a full equivalent of the diarylborinic acid, selective syntheses of more complex monosulfated glycosides, namely, a 3'-sulfolactose derivative and 3'-sulfo-β-galactosylceramide, have been accomplished. Preliminary kinetics experiments suggested that the catalyst resting state is a tetracoordinate diarylborinic ester that reacts with the SO3 complex in the turnover-limiting step. Catalyst inhibition by the pyranoside sulfate product and trialkylamine byproduct of the reaction was demonstrated.
Collapse
Affiliation(s)
- Daniel Gorelik
- Department of Chemistry , University of Toronto , 80 St. George St. , Toronto , ON M5S 3H6 , Canada
| | - Yu Chen Lin
- Department of Chemistry , University of Toronto , 80 St. George St. , Toronto , ON M5S 3H6 , Canada
| | | | - Mark S Taylor
- Department of Chemistry , University of Toronto , 80 St. George St. , Toronto , ON M5S 3H6 , Canada
| |
Collapse
|
3
|
Hunter CD, Guo T, Daskhan G, Richards MR, Cairo CW. Synthetic Strategies for Modified Glycosphingolipids and Their Design as Probes. Chem Rev 2018; 118:8188-8241. [DOI: 10.1021/acs.chemrev.8b00070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Carmanah D. Hunter
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tianlin Guo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Gour Daskhan
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Michele R. Richards
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Christopher W. Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|