1
|
Li Y, Lin X, Li Z, Liu J. Highly-Efficient and Visible Light Photocatalytical Degradation of Organic Pollutants Using TiO 2-Loaded on Low-Cost Biomass Husk. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8671. [PMID: 36500169 PMCID: PMC9739637 DOI: 10.3390/ma15238671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
A composite composing of TiO2 nanoparticles load on biomass rice husk (RH) is developed by directly growing TiO2 nanoparticles on RH. The in-situ growth of the nanocrystals on RH is achieved by a low-cost and one-step homogeneous precipitation. Rapid hydrolysis proceeds at 90 °C by using ammonium fluotitanate and urea to facilitate the selective growth of TiO2. The method provides an easy access to the TiO2-RH composite with a strong interaction between TiO2 nanoparticles and the underlying RH. The structure and composition of TiO2-RH are characterized by using X-ray diffraction, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and UV-vis absorption spectroscopy. TiO2 nanoparticles-RH exhibits a good photocatalytic degradation of methyl orange. The results show that 92% of methyl orange (20 mg L-1) can be degraded within three hours in visible light. The catalytic activity of the composite is not reduced after 6 cycles, and it still reaches 81% after 6 cycles. The enhanced performance is ascribed to the suitable particle size the good dispersibility. It is expected that the high photocatalytical performance and the cost-effective composite presented here will inspire the development of other high-performance photocatalysts.
Collapse
Affiliation(s)
- Yuan Li
- Sichuan Vocational and Technical College, Suining 629000, China
| | - Xirong Lin
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano-Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhanpeng Li
- Nanjing Noland Environmental Engineering Technology Co., Ltd., Nanjing 211215, China
| | - Jinyun Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
- Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
2
|
Salama A, Abouzeid R, Leong WS, Jeevanandam J, Samyn P, Dufresne A, Bechelany M, Barhoum A. Nanocellulose-Based Materials for Water Treatment: Adsorption, Photocatalytic Degradation, Disinfection, Antifouling, and Nanofiltration. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3008. [PMID: 34835769 PMCID: PMC8620168 DOI: 10.3390/nano11113008] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022]
Abstract
Nanocelluloses are promising bio-nano-materials for use as water treatment materials in environmental protection and remediation. Over the past decades, they have been integrated via novel nanoengineering approaches for water treatment processes. This review aims at giving an overview of nanocellulose requirements concerning emerging nanotechnologies of waster treatments and purification, i.e., adsorption, absorption, flocculation, photocatalytic degradation, disinfection, antifouling, ultrafiltration, nanofiltration, and reverse osmosis. Firstly, the nanocellulose synthesis methods (mechanical, physical, chemical, and biological), unique properties (sizes, geometries, and surface chemistry) were presented and their use for capturing and removal of wastewater pollutants was explained. Secondly, different chemical modification approaches surface functionalization (with functional groups, polymers, and nanoparticles) for enhancing the surface chemistry of the nanocellulose for enabling the effective removal of specific pollutants (suspended particles, microorganisms, hazardous metals ions, organic dyes, drugs, pesticides fertilizers, and oils) were highlighted. Thirdly, new fabrication approaches (solution casting, thermal treatment, electrospinning, 3D printing) that integrated nanocelluloses (spherical nanoparticles, nanowhiskers, nanofibers) to produce water treatment materials (individual composite nanoparticles, hydrogels, aerogels, sponges, membranes, and nanopapers) were covered. Finally, the major challenges and future perspectives concerning the applications of nanocellulose based materials in water treatment and purification were highlighted.
Collapse
Affiliation(s)
- Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt; (A.S.); (R.A.)
| | - Ragab Abouzeid
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt; (A.S.); (R.A.)
- University of Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France;
| | - Wei Sun Leong
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore;
| | - Jaison Jeevanandam
- CQM—Centro de Química da Madeira, MMRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal;
| | - Pieter Samyn
- Institute for Materials Research (MO-IMOMEC), Applied and Analytical Chemistry, University of Hasselt, B-3590 Diepenbeek, Belgium;
| | - Alain Dufresne
- University of Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France;
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Helwan 11795, Egypt
- School of Chemical Sciences, Dublin City University, Dublin 9, D09 Y074 Dublin, Ireland
| |
Collapse
|
3
|
Role of Oil Palm Empty Fruit Bunch-Derived Cellulose in Improving the Sonocatalytic Activity of Silver-Doped Titanium Dioxide. Polymers (Basel) 2021; 13:polym13203530. [PMID: 34685289 PMCID: PMC8541471 DOI: 10.3390/polym13203530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, a novel cellulose/Ag/TiO2 nanocomposite was successfully synthesized via the hydrothermal method. The cellulose extracted from oil palm empty fruit bunch (OPEFB) could address the disposal issue created by OPEFB biomass. Characterization studies such as FESEM, EDX, HRTEM, XRD, FTIR, UV-Vis DRS, PL, XPS, and surface analysis were conducted. It was observed that the incorporation of cellulose could hinder the agglomeration, reduce the band gap energy to 3 eV, increase the specific surface area to 150.22 m3/g, and lower the recombination rate of the generated electron-hole pairs compared to Ag/TiO2 nanoparticles. The excellent properties enhance the sonocatalytic degradation efficiency of 10 mg/L Congo red (up to 81.3% after 10 min ultrasonic irradiation) in the presence of 0.5 g/L cellulose/Ag/TiO2 at 24 kHz and 280 W. The improvement of catalytic activity was due to the surface plasmon resonance effect of Ag and numerous hydroxyl groups on cellulose that capture the holes, which delay the recombination rate of the charge carriers in TiO2. This study demonstrated an alternative approach in the development of an efficient sonocatalyst for the sonocatalytic degradation of Congo red.
Collapse
|
4
|
Karim Z, Svedberg A, Ayub S. Role of functional groups in the production of self-assembled microfibrillated cellulose hybrid frameworks and influence on separation mechanisms of dye from aqueous medium. Int J Biol Macromol 2020; 155:1541-1552. [PMID: 31743720 DOI: 10.1016/j.ijbiomac.2019.11.131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/23/2019] [Accepted: 11/15/2019] [Indexed: 11/16/2022]
Abstract
In this article, the role of surface ζ-potential, surface charge density of functional groups and available surface functional groups (-OH and -COO-) of microfibrillated cellulose (MFC) was explored in the production of self-assembled dimensional frameworks. Furthermore, 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) oxidation of MFC and in situ TEMPO functionalization of produced frameworks were performed. The effect of increased charge density of carboxylic groups (-COO-) and decrease in surface ζ-potential on binding of titanium dioxide (TiO2) and horseradish peroxidase (HRP) was investigated further. High binding of TiO2 and HRP was reported due to high density of carboxylic group (-COO-) on produced functional frameworks. Thereafter, a model water of Irgalite Violet NZ dye was targeted to understand the behavior of available functional groups and introduced surface ζ-potential of frameworks towards adsorption of dye. Possible size-exclusion of dye aggregates was also explored using neat-MFC frameworks. Photo-oxidation (TiO2) and enzymatic catalysis (HRP) were studied further and highly effective system towards dye degradation was reported. Lastly, this study has shown a well deliberated quantitative understanding of functional groups/their density responsible for the production of frameworks and separation of dye.
Collapse
Affiliation(s)
- Zoheb Karim
- MoRe Research Örnsköldsvik AB, SE-891 22 Örnsköldsvik, Sweden.
| | - Anna Svedberg
- MoRe Research Örnsköldsvik AB, SE-891 22 Örnsköldsvik, Sweden
| | - Shahanaz Ayub
- Department of Electronics and Communication Engineering, Bundelkhand Institute of Engineering and Technology (BIET), Jhansi 284128, UP, India
| |
Collapse
|
5
|
Al-Ahmed ZA, Hassan AA, El-Khouly SM, El-Shafey SE. TEMPO-oxidized cellulose nanofibers/TiO2 nanocomposite as new adsorbent for Brilliant Blue dye removal. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-03068-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Shak KPY, Pang YL, Mah SK. Nanocellulose: Recent advances and its prospects in environmental remediation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:2479-2498. [PMID: 30345212 PMCID: PMC6176822 DOI: 10.3762/bjnano.9.232] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 08/27/2018] [Indexed: 05/20/2023]
Abstract
Among many other sustainable functional nanomaterials, nanocellulose is drawing increasing interest for use in environmental remediation technologies due to its numerous unique properties and functionalities. Nanocellulose is usually derived from the disintegration of naturally occurring polymers or produced by the action of bacteria. In this review, some invigorating perspectives on the challenges, future direction, and updates on the most relevant uses of nanocellulose in environmental remediation are discussed. The reported applications and properties of nanocellulose as an adsorbent, photocatalyst, flocculant, and membrane are reviewed in particular. However, additional effort will be required to implement and commercialize nanocellulose as a viable nanomaterial for remediation technologies. In this regard, the main challenges and limitations in working with nanocellulose-based materials are identified in an effort to improve the development and efficient use of nanocellulose in environmental remediation.
Collapse
Affiliation(s)
- Katrina Pui Yee Shak
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras 43000 Kajang, Selangor Darul Ehsan, Malaysia
| | - Yean Ling Pang
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras 43000 Kajang, Selangor Darul Ehsan, Malaysia
| | - Shee Keat Mah
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras 43000 Kajang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
7
|
Xue H, Chen Y, Liu X, Qian Q, Luo Y, Cui M, Chen Y, Yang DP, Chen Q. Visible light-assisted efficient degradation of dye pollutants with biomass-supported TiO 2 hybrids. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 82:197-203. [PMID: 29025648 DOI: 10.1016/j.msec.2017.08.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 01/31/2023]
Abstract
The objective of this work was to develop a novel organic-inorganic hybrid nanomaterial from agricultural biomass waste for environmental applications. The sugarcane bagasse (SB) supported TiO2 hybrids were firstly synthesized via a sol-gel method. A series of characterizations were carried out to reveal the structures and components of obtained hybrids. Due to organic-inorganic hybrid (OIH) effect and element doping, the SB-TiO2 hybrid can expand its optical absorbance ranging from ultraviolet to visible light. The optimal hybrid catalyst prepared with SB doping amount of 2g in 100mL titanic gel and calcined at 200°C was able to degradate 95.0% methyl orange (MO) in 5h under visible light. This study will pave a new and facile pathway for novel visible light driven photocatalysts based on TiO2 modified by agricultural biomass waste.
Collapse
Affiliation(s)
- Hun Xue
- College of Environmental Science and Engineering, Fujian Normal University, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, China
| | - Yilan Chen
- College of Environmental Science and Engineering, Fujian Normal University, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, China; College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, China
| | - Xinping Liu
- College of Environmental Science and Engineering, Fujian Normal University, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, China
| | - Qingrong Qian
- College of Environmental Science and Engineering, Fujian Normal University, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, China
| | - Yongjin Luo
- College of Environmental Science and Engineering, Fujian Normal University, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, China
| | - Malin Cui
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, China
| | - Yisong Chen
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, China
| | - Da-Peng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, China.
| | - Qinghua Chen
- College of Environmental Science and Engineering, Fujian Normal University, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, China.
| |
Collapse
|
8
|
Holze S, Krüger B, Hoffmann T, Bück A, Schwidder M. Influence of TiO2
-Layer Thickness of Spray-Coated Glass Beads on Their Photocatalytic Performance. Chem Eng Technol 2017. [DOI: 10.1002/ceat.201600432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Susann Holze
- Otto von Guericke University; Institute of Chemistry; Universitätsplatz 2 39106 Magdeburg Germany
| | - Benjamin Krüger
- Otto von Guericke University; Institute of Chemistry; Universitätsplatz 2 39106 Magdeburg Germany
| | - Torsten Hoffmann
- Otto von Guericke University; Institute of Thermal Process Engineering; Universitätsplatz 2 39106 Magdeburg Germany
| | - Andreas Bück
- Otto von Guericke University; Institute of Thermal Process Engineering; Universitätsplatz 2 39106 Magdeburg Germany
| | - Michael Schwidder
- Otto von Guericke University; Institute of Chemistry; Universitätsplatz 2 39106 Magdeburg Germany
| |
Collapse
|
9
|
Chung WH, Kim SH, Kim HS. Welding of silver nanowire networks via flash white light and UV-C irradiation for highly conductive and reliable transparent electrodes. Sci Rep 2016; 6:32086. [PMID: 27553755 PMCID: PMC4995456 DOI: 10.1038/srep32086] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/02/2016] [Indexed: 11/09/2022] Open
Abstract
In this work, silver nanowire inks with hydroxypropyl methylcellulose (HPMC) binders were coated on polyethylene terephthalate (PET) substrates and welded via flash white light and ultraviolet C (UV-C) irradiation to produce highly conductive transparent electrodes. The coated silver nanowire films were firmly welded and embedded into PET substrate successfully at room temperature and under ambient conditions using an in-house flash white light welding system and UV-C irradiation. The effects of light irradiation conditions (light energy, irradiation time, pulse duration, and pulse number) on the silver nanowire networks were studied and optimized. Bending fatigue tests were also conducted to characterize the reliability of the welded transparent conductive silver nanowire films. The surfaces of the welded silver nanowire films were analyzed via scanning electron microscopy (SEM), while the transmittance of the structures was measured using a spectrophotometer. From the results, a highly conductive and transparent silver nanowire film with excellent reliability could be achieved at room temperature under ambient conditions via the combined flash white light and UV-C irradiation welding process.
Collapse
Affiliation(s)
- Wan-Ho Chung
- Department of Mechanical Convergence Engineering Hanyang University, 17 Haendang-Dong, Seongdong-Gu, Seoul 133-791 South Korea
| | - Sang-Ho Kim
- Nanotech and beyond Co., 125-10, Techno 2-ro, Yuseong-gu, Daejeon, 34024, South Korea
| | - Hak-Sung Kim
- Department of Mechanical Convergence Engineering Hanyang University, 17 Haendang-Dong, Seongdong-Gu, Seoul 133-791 South Korea.,Institute of Nano Science and Technology, Hanyang University, Seoul, 133-791, South Korea
| |
Collapse
|