1
|
Anghel D, Epuran C, Fringu I, Fratilescu I, Lascu A, Macsim AM, Chiriac V, Gherban M, Vlascici D, Fagadar-Cosma E. Double Type Detection of Triiodide and Iodide Ions Using a Manganese(III) Porphyrin as Sensitive Compound. SENSORS (BASEL, SWITZERLAND) 2024; 24:5517. [PMID: 39275429 PMCID: PMC11397875 DOI: 10.3390/s24175517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024]
Abstract
A paramagnetic A3B-type Mn(III)-porphyrin was synthesized and characterized by physical-chemical methods (UV-Vis, FT-IR, 1H-NMR spectroscopy). The obtained compound was tested as a sensitive material for the spectrophotometric and potentiometric detection of iodine species. Using UV-Vis spectroscopy, the triiodide anions could be detected with high precision in the concentration interval of 1.02 × 10-5 to 2.3 × 10-5 M, with an LOD of 9.44 × 10-6 M. The PVC-based electrode using DOP as a plasticizer showed a sensitivity toward iodide in a wide concentration range of 1.0 × 10-5 to 1.0 × 10-1 M, with an LOD of 8.0 × 10-6 M. Both methods are simple, low-cost, and efficient for the detection of iodine species in synthetic samples and pharmaceuticals.
Collapse
Affiliation(s)
- Diana Anghel
- Institute of Chemistry "Coriolan Dragulescu", Mihai Viteazu Avenue 24, 300223 Timisoara, Romania
| | - Camelia Epuran
- Institute of Chemistry "Coriolan Dragulescu", Mihai Viteazu Avenue 24, 300223 Timisoara, Romania
| | - Ionela Fringu
- Institute of Chemistry "Coriolan Dragulescu", Mihai Viteazu Avenue 24, 300223 Timisoara, Romania
| | - Ion Fratilescu
- Institute of Chemistry "Coriolan Dragulescu", Mihai Viteazu Avenue 24, 300223 Timisoara, Romania
| | - Anca Lascu
- Institute of Chemistry "Coriolan Dragulescu", Mihai Viteazu Avenue 24, 300223 Timisoara, Romania
| | - Ana-Maria Macsim
- Institute of Macromolecular Chemistry "Petru Poni", Grigore Ghica Vodă Alley, No. 41A, 700487 Iasi, Romania
| | - Vlad Chiriac
- Faculty of Chemistry, Biology, Geography, West University of Timisoara, 4 Vasile Parvan Ave, 300223 Timisoara, Romania
| | - Mihaela Gherban
- National Institute for Research and Development in Electrochemistry and Condensed Matter, P. Andronescu Street, No. 1, 300224 Timisoara, Romania
| | - Dana Vlascici
- Faculty of Chemistry, Biology, Geography, West University of Timisoara, 4 Vasile Parvan Ave, 300223 Timisoara, Romania
| | - Eugenia Fagadar-Cosma
- Institute of Chemistry "Coriolan Dragulescu", Mihai Viteazu Avenue 24, 300223 Timisoara, Romania
| |
Collapse
|
2
|
Pushparaj K, Catini A, Capuano R, Allegra V, Magna G, Antonelli G, Martinelli E, Agresti A, Pescetelli S, Sivalingam Y, Paolesse R, Di Natale C. Nonenzymatic Potentiometric Detection of Ascorbic Acid with Porphyrin/ZnO-Functionalized Laser-Induced Graphene as an Electrode of EGFET Sensors. ACS OMEGA 2024; 9:10650-10659. [PMID: 38463246 PMCID: PMC10918774 DOI: 10.1021/acsomega.3c09141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/12/2024]
Abstract
Laser-induced graphene (LIG) has emerged as a highly versatile material with significant potential in the development of electrochemical sensors. In this paper, we investigate the use of LIG and LIG functionalized with ZnO and porphyrins-ZnO as the gate electrodes of the extended gate field effect transistors (EGFETs). The resultant sensors exhibit remarkable sensitivity and selectivity, particularly toward ascorbic acid. The intrinsic sensitivity of LIG undergoes a notable enhancement through the incorporation of hybrid organic-inorganic materials. Among the variations tested, the LIG electrode coated with zinc tetraphenylporphyrin-capped ZnO nanoparticles demonstrates superior performance, reaching a limit of detection of approximately 3 nM. Furthermore, the signal ratio for 5 μM ascorbic acid relative to the same concentration of dopamine exceeds 250. The practical applicability of these sensors is demonstrated through the detection of ascorbic acid in real-world samples, specifically in a commercially available food supplement containing l-arginine. Notably, formulations with added vitamin C exhibit signals at least 25 times larger than those without, underscoring the sensors' capability to discern and quantify the presence of ascorbic acid in complex matrices. This research not only highlights the enhanced performance of LIG-based sensors through functionalization but also underscores their potential for practical applications in the analysis of vitamin-rich supplements.
Collapse
Affiliation(s)
- Kishore Pushparaj
- Department
of Electronic Engineering, University of
Rome Tor Vergata, 00133 Rome, Italy
| | - Alexandro Catini
- Department
of Electronic Engineering, University of
Rome Tor Vergata, 00133 Rome, Italy
| | - Rosamaria Capuano
- Department
of Electronic Engineering, University of
Rome Tor Vergata, 00133 Rome, Italy
| | - Valerio Allegra
- Department
of Electronic Engineering, University of
Rome Tor Vergata, 00133 Rome, Italy
| | - Gabriele Magna
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, 00133 Rome, Italy
| | - Gianni Antonelli
- Department
of Electronic Engineering, University of
Rome Tor Vergata, 00133 Rome, Italy
| | - Eugenio Martinelli
- Department
of Electronic Engineering, University of
Rome Tor Vergata, 00133 Rome, Italy
| | - Antonio Agresti
- Department
of Electronic Engineering, University of
Rome Tor Vergata, 00133 Rome, Italy
| | - Sara Pescetelli
- Department
of Electronic Engineering, University of
Rome Tor Vergata, 00133 Rome, Italy
| | - Yuvaraj Sivalingam
- Department
of Physics and Nanotechnology, SRM Institute
of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Roberto Paolesse
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, 00133 Rome, Italy
| | - Corrado Di Natale
- Department
of Electronic Engineering, University of
Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
3
|
Arora S, Nagpal R, Gusain M, Singh B, Pan Y, Yadav D, Ahmed I, Kumar V, Parshad B. Organic-Inorganic Porphyrinoid Frameworks for Biomolecule Sensing. ACS Sens 2023; 8:443-464. [PMID: 36683281 DOI: 10.1021/acssensors.2c02408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Porphyrinoids and their analogous compounds play an important role in biosensing applications on account of their unique and versatile catalytic, coordination, photophysical, and electrochemical properties. Their remarkable arrays of properties can be finely tuned by synthetically modifying the porphyrinoid ring and varying the various structural parameters such as peripheral functionalization, metal coordination, and covalent or physical conjugation with other organic or inorganic scaffolds such as nanoparticles, metal-organic frameworks, and polymers. Porphyrinoids and their organic-inorganic conjugates are not only used as responsive materials but also utilized for the immobilization and embedding of biomolecules for applications in wearable devices, fast sensing devices, and other functional materials. The present review delineates the impact of different porphyrinoid conjugates on their physicochemical properties and their specificity as biosensors in a range of applications. The newest porphyrinoid types and their synthesis, modification, and functionalization are presented along with their advantages and performance improvements.
Collapse
Affiliation(s)
- Smriti Arora
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Ritika Nagpal
- Department of Chemistry, SRM University, 39, Rajiv Gandhi Education City, Delhi-NCR, Sonipat, Haryana 131029, India
| | - Meenakshi Gusain
- Centre of Micro-Nano System, School of Information Science and Technology, Fudan University, 200433 Shanghai, China
| | | | - Yuanwei Pan
- Department of Diagnostic Radiology, Department of Chemical and Biomolecular Engineering, and Department of Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Deepak Yadav
- Department of Chemistry, Gurugram University, Gurugram, Haryana 122003, India
| | - Ishtiaq Ahmed
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Vinod Kumar
- Department of Chemistry, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Badri Parshad
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| |
Collapse
|
4
|
Zheng Y, Karimi-Maleh H, Fu L. Evaluation of Antioxidants Using Electrochemical Sensors: A Bibliometric Analysis. SENSORS 2022; 22:s22093238. [PMID: 35590927 PMCID: PMC9103690 DOI: 10.3390/s22093238] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023]
Abstract
The imbalance of oxidation and antioxidant systems in the biological system can lead to oxidative stress, which is closely related to the pathogenesis of many diseases. Substances with antioxidant capacity can effectively resist the harmful damage of oxidative stress. How to measure the antioxidant capacity of antioxidants has essential application value in medicine and food. Techniques such as DPPH radical scavenging have been developed to measure antioxidant capacity. However, these traditional analytical techniques take time and require large instruments. It is a more convenient method to evaluate the antioxidant capacity of antioxidants based on their electrochemical oxidation and reduction behaviors. This review summarizes the evaluation of antioxidants using electrochemical sensors by bibliometrics. The development of this topic was described, and the research priorities at different stages were discussed. The topic was investigated in 1999 and became popular after 2010 and has remained popular ever since. A total of 758 papers were published during this period. In the early stages, electrochemical techniques were used only as quantitative techniques and other analytical techniques. Subsequently, cyclic voltammetry was used to directly study the electrochemical behavior of different antioxidants and evaluate antioxidant capacity. With methodological innovations and assistance from materials science, advanced electrochemical sensors have been fabricated to serve this purpose. In this review, we also cluster the keywords to analyze different investigation directions under the topic. Through co-citation of papers, important papers were analyzed as were how they have influenced the topic. In addition, the author’s country distribution and category distribution were also interpreted in detail. In the end, we also proposed perspectives for the future development of this topic.
Collapse
Affiliation(s)
- Yuhong Zheng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China;
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, Chengdu 610056, China;
- Laboratory of Nanotechnology, Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan 9477177870, Iran
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg 17011, South Africa
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
- Correspondence:
| |
Collapse
|
5
|
Excellent Cooperation between Carboxyl-Substituted Porphyrins, k-Carrageenan and AuNPs for Extended Application in CO2 Capture and Manganese Ion Detection. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10040133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Significant tasks of the presented research are the development of multifunctional materials capable both to detect/capture carbon dioxide and to monitor toxic metal ions from waters, thus contributing to maintaining a sustainable and clean environment. The purpose of this work was to synthesize, characterize (NMR, FT-IR, UV-Vis, Fluorescence, AFM) and exploit the optical and emission properties of a carboxyl-substituted A3B porphyrin, 5-(4-carboxy-phenyl)-10,15,20-tris-(4-methyl-phenyl)–porphyrin, and based on it, to develop novel composite material able to adsorb carbon dioxide. This porphyrin-k-carrageenan composite material can capture CO2 in ambient conditions with a performance of 6.97 mmol/1 g adsorbent. Another aim of our research was to extend this porphyrin- k-carrageenan material’s functionality toward Mn2+ detection from polluted waters and from medical samples, relying on its synergistic partnership with gold nanoparticles (AuNPs). The plasmonic porphyrin-k-carrageenan-AuNPs material detected Mn2+ in the range of concentration of 4.56 × 10−5 M to 9.39 × 10−5 M (5–11 mg/L), which can be useful for monitoring health of humans exposed to polluted water sources or those who ingested high dietary manganese.
Collapse
|
6
|
Shenashen MA, Emran MY, El Sabagh A, Selim MM, Elmarakbi A, El-Safty SA. Progress in sensory devices of pesticides, pathogens, coronavirus, and chemical additives and hazards in food assessment: Food safety concerns. PROGRESS IN MATERIALS SCIENCE 2022; 124:100866. [DOI: 10.1016/j.pmatsci.2021.100866] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
7
|
Fringu I, Lascu A, Macsim AM, Fratilescu I, Epuran C, Birdeanu M, Fagadar-Cosma E. Pt(II)-A2B2 metalloporphyrin-AuNPS hybrid material suitable for optical detection of 1-anthraquinonsulfonic acid. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02047-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Qu L, Zhao L, Chen T, Li J, Nie X, Li R, Sun C. Two novel coordination polymers and their hybrid materials with Ag nanoparticles for non-enzymatic detection of glucose. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
9
|
Faustova M, Nikolskaya E, Sokol M, Fomicheva M, Petrov R, Yabbarov N. Metalloporphyrins in Medicine: From History to Recent Trends. ACS APPLIED BIO MATERIALS 2020; 3:8146-8171. [PMID: 35019597 DOI: 10.1021/acsabm.0c00941] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The history of metalloporphyrins dates back more than 200 years ago. Metalloporphyrins are excellent catalysts, capable of forming supramolecular systems, participate in oxygen photosynthesis, transport, and used as contrast agents or superoxide dismutase mimetics. Today, metalloporphyrins represent complexes of conjugated π-electron system and metals from the entire periodic system. However, the effect of these compounds on living systems has not been fully understood, and researchers are exploring the properties of metalloporphyrins thereby extending their further application. This review provides an overview of the variety of metalloporphyrins that are currently used in different medicine fields and how metalloporphyrins became the subject of scientists' interest. Currently, metalloporphyrins utilization has expanded significantly, which gave us an opprotunuty to summarize recent progress in metalloporphyrins derivatives and prospects of their application in the treatment and diagnosis of different diseases.
Collapse
Affiliation(s)
- Mariia Faustova
- MIREA-Russian Technological University, Lomonosov Institute of Fine Chemical Technologies, 119454 Moscow, Russia.,N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Nikolskaya
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria Sokol
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| | - Margarita Fomicheva
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| | - Rem Petrov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Nikita Yabbarov
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| |
Collapse
|
10
|
Sebarchievici I, Taranu BO, Rus SF, Fagadar-Cosma E. Electrochemical behaviour and analytical applications of a manganese porphyrin – silica hybrid film prepared by pulsed laser deposition. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
11
|
Karaboduk K. Electrochemical Determination of Ascorbic Acid Based on AgNPs/PVP‐Modified Glassy Carbon Electrode. ChemistrySelect 2019. [DOI: 10.1002/slct.201901102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kuddusi Karaboduk
- Life Science Application and Research CenterGazi University Ankara Turkey
| |
Collapse
|
12
|
Huang D, Li X, Chen M, Chen F, Wan Z, Rui R, Wang R, Fan S, Wu H. An electrochemical sensor based on a porphyrin dye-functionalized multi-walled carbon nanotubes hybrid for the sensitive determination of ascorbic acid. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Fagadar-Cosma E, Lascu A, Shova S, Zaltariov MF, Birdeanu M, Croitor L, Balan A, Anghel D, Stamatin S. X-ray Structure Elucidation of a Pt-Metalloporphyrin and Its Application for Obtaining Sensitive AuNPs-Plasmonic Hybrids Capable of Detecting Triiodide Anions. Int J Mol Sci 2019; 20:ijms20030710. [PMID: 30736413 PMCID: PMC6387073 DOI: 10.3390/ijms20030710] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/26/2022] Open
Abstract
The development of UV–vis spectrophotometric methods based on metalloporphyrins for fast, highly sensitive and selective anion detection, which avoids several of the practical challenges associated with other detection methods, is of tremendous importance in analytical chemistry. In this study, we focused on achieving a selective optical sensor for triiodide ion detection in traces based on a novel hybrid material comprised of Pt(II) 5,10,15,20-tetra(4-methoxy-phenyl)-porphyrin (PtTMeOPP) and gold nanoparticles (AuNPs). This sensor has high relevance in medical physiological tests. The structure of PtTMeOPP was investigated by single crystal X-ray diffraction in order to understand the metal surroundings and the molecule conformation and to assess if it qualifies as a potential sensitive material. It was proven that the Pt-porphyrin generated 1D H-bond supramolecular chains due to the weak C-H···O intermolecular hydrogen bonding. The presence of ordered voids in the crystal encouraged us to use PtTMeOPP as the sensing material for triiodide ion and to enhance its potential in a novel AuNPs/PtTMeOPP hybrid by the synergistic effects provided by the plasmonic gold nanoparticles. The spectrophotometric sensor is characterized by a detection limit of 1.5 × 10−9 M triiodide ion concentration and a remarkable confidence coefficient of 99.98%.
Collapse
Affiliation(s)
- Eugenia Fagadar-Cosma
- Institute of Chemistry Timisoara of Romanian Academy, Mihai Viteazu Ave. No. 24, 300223 Timisoara, Romania.
| | - Anca Lascu
- Institute of Chemistry Timisoara of Romanian Academy, Mihai Viteazu Ave. No. 24, 300223 Timisoara, Romania.
| | - Sergiu Shova
- Laboratory of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda No. 41A, RO-700487 Iasi, Romania.
| | - Mirela-Fernanda Zaltariov
- Laboratory of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda No. 41A, RO-700487 Iasi, Romania.
| | - Mihaela Birdeanu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, P. Andronescu Street, No. 1, 300224 Timisoara, Romania.
| | - Lilia Croitor
- Institute of Chemistry Timisoara of Romanian Academy, Mihai Viteazu Ave. No. 24, 300223 Timisoara, Romania.
| | - Adriana Balan
- 3Nano-SAE Research Center, Faculty of Physics, University of Bucharest, Atomistilor Street, No 405, 077125 Măgurele, Romania.
| | - Diana Anghel
- Institute of Chemistry Timisoara of Romanian Academy, Mihai Viteazu Ave. No. 24, 300223 Timisoara, Romania.
| | - Serban Stamatin
- 3Nano-SAE Research Center, Faculty of Physics, University of Bucharest, Atomistilor Street, No 405, 077125 Măgurele, Romania.
| |
Collapse
|
14
|
Hybrid Mn-Porphyrin-Nanogold Nanomaterial Applied for the Spectrophotometric Detection of β-Carotene. J CHEM-NY 2018. [DOI: 10.1155/2018/5323561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A hybrid formed between Mn(III) tetratolyl-porphyrin chloride (MnTTPCl) and spherical gold colloid (n-Au),MnTTPCl/n-Au, was tested along with its component nanomaterials as promising candidates in the detection ofβ-carotene from ethanol solutions. Among the investigated nanomaterials, the largestβ-carotene concentration interval detectable by UV-Vis spectrophotometry (9.80 × 10−6 M–1.15 × 10−4 M) was obtained when using theMnTTPCl/n-Auhybrid. This hybrid material gives rise to the widest absorption band, covering the range of 425 nm to 581 nm after treatment withβ-carotene.
Collapse
|