1
|
Huynh NC, Nguyen TTT, Nguyen DTC, Tran TV. Production of MgFe 2O 4/activated carbons derived from a harmful grass Cynodon dactylon and their utilization for ciprofloxacin removal. CHEMOSPHERE 2023; 343:139891. [PMID: 37604337 DOI: 10.1016/j.chemosphere.2023.139891] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/29/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Cynodon dactylon, an invasive species, exhibits its robust adaptability, reproduction and nutrient regime against the local species. Taking advantage of this harmful grass as a raw precursor to produce valuable materials for wastewater treatment has paid much attention. Herein, we report on the fabrication of Cynodom dactylon derived MgFe2O4@AC with a main goal of effective removal of ciprofloxacin antibiotic from water. Our findings showed that MgFe2O4@ACK1 composites attained mesoporous textures, high specific surface areas (884.3-991.6 m2 g-1), and MgFe2O4-20%@ACK1 was the most effective with a very high removal efficiency of 96.7%. The Elovich model was suitable for describing the kinetic of adsorption with (Radj)2 of 0.9988. Meanwhile, the isotherm data obeyed the Langmuir model corresponding to (Radj)2 of 0.9993. Qmax value of MgFe2O4-20%@ACK1 was determined at 211.67 mg g-1. The proposed adsorption mechanism primarily comprises five routes as follows, (i) pore-filling, (ii) π-π interaction, (iii) electrostatic interaction, (iv) hydrogen bonding, and (v) hydrophobic interaction. MgFe2O4-20%@ACK1 adsorbent could reuse with three cycles. We recommend that MgFe2O4/ACs derived from Cynodom dactylon could be high-efficiency adsorbents for the elimination of antibiotics.
Collapse
Affiliation(s)
- Nguyen Chi Huynh
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|
2
|
Huynh NC, Nguyen TTT, Nguyen DTC, Tran TV. Occurrence, toxicity, impact and removal of selected non-steroidal anti-inflammatory drugs (NSAIDs): A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165317. [PMID: 37419350 DOI: 10.1016/j.scitotenv.2023.165317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most frequently used pharmaceuticals for human therapy, pet therapeutics, and veterinary feeds, enabling them to enter into water sources such as wastewater, soil and sediment, and seawater. The control of NSAIDs has led to the advent of the novel materials for treatment techniques. Herein, we review the occurrence, impact and toxicity of NSAIDs against aquatic microorganisms, plants and humans. Typical NSAIDs, e.g., ibuprofen, ketoprofen, diclofenac, naproxen and aspirin were detected at high concentrations in wastewater up to 2,747,000 ng L-1. NSAIDs in water could cause genotoxicity, endocrine disruption, locomotive disorders, body deformations, organs damage, and photosynthetic corruption. Considering treatment methods, among adsorbents for removal of NSAIDs from water, metal-organic frameworks (10.7-638 mg g-1) and advanced porous carbons (7.4-400 mg g-1) were the most robust. Therefore, these carbon-based adsorbents showed promise in efficiency for the treatment of NSAIDs.
Collapse
Affiliation(s)
- Nguyen Chi Huynh
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| |
Collapse
|
3
|
Orimolade BO, Oladipo AO, Idris AO, Usisipho F, Azizi S, Maaza M, Lebelo SL, Mamba BB. Advancements in electrochemical technologies for the removal of fluoroquinolone antibiotics in wastewater: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163522. [PMID: 37068672 DOI: 10.1016/j.scitotenv.2023.163522] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
In recent times, the need to make water safer and cleaner through the elimination of recalcitrant pharmaceutical residues has been the aim of many studies. Fluoroquinolone antibiotics such as ciprofloxacin, norfloxacin, enrofloxacin, and levofloxacin are among the commonly detected pharmaceuticals in wastewater. Since the presence of these pharmaceuticals in water bodies poses serious risks to living organisms, it is vital to adopt effective wastewater treatment techniques for their complete removal. Electrochemical technologies such as photoelectrocatalysis, electro-Fenton, electrocoagulation, and electrochemical oxidation have been established as techniques capable of the complete removal of organics including pharmaceuticals from wastewater. Hence, this review presents discussions on the recent progress (literature within 2018-2022) in the applications of common electrochemical processes for the degradation of fluoroquinolone antibiotics from wastewater. The fundamentals of these processes are highlighted while the results obtained using the processes are critically discussed. Furthermore, the inherent advantages and limitations of these processes in the mineralization of fluoroquinolone antibiotics are clearly emphasized. Additionally, appropriate recommendations are made toward improving electrochemical technologies for the complete removal of these pharmaceuticals with minimal energy consumption. Therefore, this review will serve as a bedrock for future researchers concerned with wastewater treatments to make informed decisions in the selection of suitable electrochemical techniques for the removal of pharmaceuticals from wastewater.
Collapse
Affiliation(s)
- Benjamin O Orimolade
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, 1709 Johannesburg, South Africa.
| | - Adewale O Oladipo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa
| | - Azeez O Idris
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa; Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, Western Cape, South Africa
| | - Feleni Usisipho
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, 1709 Johannesburg, South Africa
| | - Shohreh Azizi
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa; Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, Western Cape, South Africa
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa; Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, Western Cape, South Africa
| | - Sogolo L Lebelo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, 1709 Johannesburg, South Africa
| |
Collapse
|
4
|
Nkoh JN, Oderinde O, Etafo NO, Kifle GA, Okeke ES, Ejeromedoghene O, Mgbechidinma CL, Oke EA, Raheem SA, Bakare OC, Ogunlaja OO, Sindiku O, Oladeji OS. Recent perspective of antibiotics remediation: A review of the principles, mechanisms, and chemistry controlling remediation from aqueous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163469. [PMID: 37061067 DOI: 10.1016/j.scitotenv.2023.163469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/08/2023] [Accepted: 04/08/2023] [Indexed: 06/01/2023]
Abstract
Antibiotic pollution is an ever-growing concern that affects the growth of plants and the well-being of animals and humans. Research on antibiotics remediation from aqueous media has grown over the years and previous reviews have highlighted recent advances in antibiotics remediation technologies, perspectives on antibiotics ecotoxicity, and the development of antibiotic-resistant genes. Nevertheless, the relationship between antibiotics solution chemistry, remediation technology, and the interactions between antibiotics and adsorbents at the molecular level is still elusive. Thus, this review summarizes recent literature on antibiotics remediation from aqueous media and the adsorption perspective. The review discusses the principles, mechanisms, and solution chemistry of antibiotics and how they affect remediation and the type of adsorbents used for antibiotic adsorption processes. The literature analysis revealed that: (i) Although antibiotics extraction and detection techniques have evolved from single-substrate-oriented to multi-substrates-oriented detection technologies, antibiotics pollution remains a great danger to the environment due to its trace level; (ii) Some of the most effective antibiotic remediation technologies are still at the laboratory scale. Thus, upscaling these technologies to field level will require funding, which brings in more constraints and doubts patterning to whether the technology will achieve the same performance as in the laboratory; and (iii) Adsorption technologies remain the most affordable for antibiotic remediation. However, the recent trends show more focus on developing high-end adsorbents which are expensive and sometimes less efficient compared to existing adsorbents. Thus, more research needs to focus on developing cheaper and less complex adsorbents from readily available raw materials. This review will be beneficial to stakeholders, researchers, and public health professionals for the efficient management of antibiotics for a refined decision.
Collapse
Affiliation(s)
- Jackson Nkoh Nkoh
- Department of Chemistry, University of Buea, P.O. Box 63, Buea, Cameroon; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O. Box 25305000100, Nairobi, Kenya
| | - Olayinka Oderinde
- Department of Chemistry, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria.
| | - Nelson Oshogwue Etafo
- Programa de Posgrado en Ciencia y Tecnología de Materiales, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N Republica, 25280 Saltillo, Coahuila, Mexico
| | - Ghebretensae Aron Kifle
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O. Box 25305000100, Nairobi, Kenya; Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China; Department of Chemistry, Mai Nefhi College of Science, National Higher Education and Research Institute, Asmara 12676, Eritrea
| | - Emmanuel Sunday Okeke
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O. Box 25305000100, Nairobi, Kenya; Department of Biochemistry, Faculty of Biological Science & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Onome Ejeromedoghene
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China
| | - Chiamaka Linda Mgbechidinma
- School of Life Sciences, Centre for Cell and Development Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Department of Microbiology, University of Ibadan, Ibadan, Oyo State 200243, Nigeria
| | - Emmanuel A Oke
- Department of Chemistry, Veer Narmad South Gujarat University, Surat 395007, India
| | - Saheed Abiola Raheem
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Omonike Christianah Bakare
- Department of Biological Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Olumuyiwa O Ogunlaja
- Department of Chemical Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Omotayo Sindiku
- Department of Biological Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Olatunde Sunday Oladeji
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| |
Collapse
|
5
|
Chen Y, Hao J, Yin Z, Wang Q, Zhou Y, Jia L, Li H, Liao W, Liu K. An accuracy improved ratiometric SERS sensor for rhodamine 6G in chili powder using a metal-organic framework support. RSC Adv 2023; 13:10135-10143. [PMID: 37006373 PMCID: PMC10061268 DOI: 10.1039/d3ra00790a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
Internal standard molecule 4-mercaptobenzoic acid (4-MBA) embedded Au core-Ag shell nanorods (Au-MBA@Ag NRs) were prepared by a seed-mediated growth method, then loaded on octahedral MIL-88B-NH2 to obtain a novel ratiometric SERS substrate of Au-MBA@Ag NRs/PSS/MIL-88B-NH2 (AMAPM) for detecting rhodamine 6G (R6G) in chili powder. The porous structure and excellent adsorption ability of MIL-88B-NH2, allowed for increased loading of Au-MBA@Ag NRs, thereby shortening the distance between adsorbed R6G and the "hot spot" resulting from local surface plasmon resonance (LSPR) of Au-MBA@Ag NRs. Based on the SERS characteristic peak ratio of R6G to 4-MBA, the ratiometric SERS substrate displayed improved accuracy and excellent performance for R6G detection, with a wide linear range of 5-320 nM and a low detection limit of 2.29 nM as well as fine stability, reproducibility and specificity. The proposed ratiometric SERS substrate offered a simple, fast and sensitive sensing strategy for R6G detection in chili powder, which demonstrated potential applications in food safety and the analysis of trace analytes in complex matrices.
Collapse
Affiliation(s)
- Yangjie Chen
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Chengdu University Chengdu 610106 China
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610106 China +86-28-8521-6578 +86-28-8521-6578
| | - Juan Hao
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Chengdu University Chengdu 610106 China
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610106 China +86-28-8521-6578 +86-28-8521-6578
| | - Zhihang Yin
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Chengdu University Chengdu 610106 China
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610106 China +86-28-8521-6578 +86-28-8521-6578
| | - Qinghui Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610106 China +86-28-8521-6578 +86-28-8521-6578
- School of Food and Biological Engineering, Chengdu University Chengdu 610106 China
| | - Youting Zhou
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Chengdu University Chengdu 610106 China
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610106 China +86-28-8521-6578 +86-28-8521-6578
| | - Lingpu Jia
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610106 China +86-28-8521-6578 +86-28-8521-6578
- Institute for Advanced Study, Chengdu University Chengdu 610106 China
| | - Huiming Li
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610106 China +86-28-8521-6578 +86-28-8521-6578
- School of Food and Biological Engineering, Chengdu University Chengdu 610106 China
| | - Wenlong Liao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610106 China +86-28-8521-6578 +86-28-8521-6578
- School of Food and Biological Engineering, Chengdu University Chengdu 610106 China
| | - Kunping Liu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Chengdu University Chengdu 610106 China
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610106 China +86-28-8521-6578 +86-28-8521-6578
| |
Collapse
|
6
|
Catalytic transformation of coconut husk into single-crystal graphite and its application for the removal of antibiotics from wastewater. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Fu X, Sarker S, Ma W, Zhao W, Rong Y, Liu Q. Novel phenylalanine-modified magnetic ferroferric oxide nanoparticles for ciprofloxacin removal from aqueous solution. J Colloid Interface Sci 2022; 632:345-356. [DOI: 10.1016/j.jcis.2022.11.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
8
|
Salawu OA, Han Z, Adeleye AS. Shrimp waste-derived porous carbon adsorbent: Performance, mechanism, and application of machine learning. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129266. [PMID: 35749892 DOI: 10.1016/j.jhazmat.2022.129266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/10/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Aquaculture generates significant amount of processing wastes (more than 500 million pounds annually in the United States), the bulk of which ends up in the environment or is used in animal feed. Proper utilization of shrimp waste can increase their economic value and divert them from landfills. In this study, shrimp waste was converted to a porous carbon (named SPC) via direct pyrolysis and activation. SPC was characterized, and its performance for adsorbing ciprofloxacin from simulated water, natural waters, and wastewater was benchmarked against a commercial powdered activated carbon (PAC). The surface area of SPC (2262 m2/g) exceeded that of PAC (984 m2/g) due to abundance of micropores and mesopores. The adsorption of ciprofloxacin by SPC was thermodynamically spontaneous (ΔG = -19 kJ/mol) and fast (k1 = 1.05/min) at 25 °C. The capacity of SPC for ciprofloxacin (442 mg/g) was higher than that of PAC (181 mg/g). SPC also efficiently and simultaneously removed low concentrations (200 µg/L) of ciprofloxacin, long-chain per- and polyfluoroalkyl substances (PFAS), and Cu ions from water. An artificial neural network function was derived to predict ciprofloxacin adsorption and identify the relative contribution of each input parameter. This study demonstrates a sustainable and commercially viable pathway to reuse shrimp processing wastes.
Collapse
Affiliation(s)
- Omobayo A Salawu
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, USA
| | - Ziwei Han
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, USA
| | - Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, USA.
| |
Collapse
|
9
|
Vinayagam V, Murugan S, Kumaresan R, Narayanan M, Sillanpää M, Viet N Vo D, Kushwaha OS, Jenis P, Potdar P, Gadiya S. Sustainable adsorbents for the removal of pharmaceuticals from wastewater: A review. CHEMOSPHERE 2022; 300:134597. [PMID: 35439481 DOI: 10.1016/j.chemosphere.2022.134597] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/22/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Over the previous three decades, the worldwide use of pharmaceuticals has surged by more than 2.5 times. Although being considered essential to save many lives, pharmaceuticals have also emerged as a large source of complex environmental contaminants in recent decades. Consequently, the pharmaceuticals and their breakdown products are ending up into the water bodies thus progressively contaminating them and the surrounding environments. Based on recent studies concentrations in water sources are typically >0.1 μg/l and the concentration in treated water is typically >0.05 μg/l. These pharma drugs are removed from aquatic systems by processes such as oxidation, Ultraviolet degradation, reverse osmosis and nano-filtration. However, hazardous sludge creation, incomplete removal, expensive capital and operating costs, and the need for professional operating and maintenance personnel have all limited the economic sustainability of these systems. As a result, the presence of pharmaceuticals in water necessitates even more advanced technologies of purification to harvest clean water, yet present approaches are constrained by their high costs, low reusability, and disposal issues. Here, we review sustainable adsorbents for the removal of pharmaceuticals from wastewater. In this comprehensive review, an evaluation of water contamination caused by pharmaceutical compounds is discussed. An overview of current research on the employment of sustainable adsorbents for the removal of the major pharmaceuticals prevalent in water sources. Numerous aspects of high adsorption efficiencies of these pharmaceutical compounds with such sustainable adsorbents were observed; however, other factors, such as adsorbent regeneration and cost evaluation, must be taken into account in order to assess the true applicability of adsorbents.
Collapse
Affiliation(s)
- Vignesh Vinayagam
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Shrima Murugan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Rishikeswaran Kumaresan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Meyyappan Narayanan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Zhejiang Rongsheng Environmental Protection Paper Co. Ltd, No. 588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang, 314213, PR China
| | - Dai Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| | - Omkar Singh Kushwaha
- Department of Chemical Engineering, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, 600036, India.
| | - Ponraj Jenis
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 119077
| | - Pratik Potdar
- Department of Chemical Engineering, Columbia University, New York, 10027, United States
| | - Shreyans Gadiya
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, United States
| |
Collapse
|
10
|
Synthesis and Characterization Bimetallic Organic Framework CoxFex(BDC) and Adsorption Cationic and Anionic Dyes. Processes (Basel) 2022. [DOI: 10.3390/pr10071352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Co-doped Fe-MOF bimetallic organic framework materials at different ratios were synthesized based on the solvothermal method, and we evaluated their morphological characteristics by modern analytical methods such as SEM, XRD, FT-IR, and isotherm of nitrogen adsorption-desorption (BET). The specific surface area of the 0.3 CoFe-MOF sample (280.9 m2/g) is much larger than the Fe-MOF and samples at other ratios. The post-synthesized materials were evaluated for their ability to absorb various dyes, including Methylene Blue (MB), Methyl orange (MO), Congo red (CR), and Rhodamine (RhB), and evaluated for the effects of pH, the initial concentration of the dye solution, time, and dose of adsorbent. The results show that the 0.3 CoFe-MOF material has a high adsorption capacity that is superior to both the original Fe-MOF and the CoFe-MOFs at other ratios. The highest adsorption capacity of MB dye by 0.3 CoFe-MOF reaches up to 562.1 mg/g at pH 10, the initial concentration of MB of 200 mg/L, after 90 min. The charged properties of the dyes and the charged nature of the bimetallic organic frameworks are best demonstrated through the adsorption of dye mixtures. The adsorption efficiency on the mixed system of cationic (MB) and anionic (MO) dyes yielded the highest removal efficiency of 70% and 81%, respectively, after 30 min. Therefore, the research has opened up the potential application of M/Fe-MOF modified materials and CoFe-MOF in organic dyes adsorption in wastewater treatment for environmental protection.
Collapse
|
11
|
Hu Q, Pang S, Wang D. In-depth Insights into Mathematical Characteristics, Selection Criteria and Common Mistakes of Adsorption Kinetic Models: A Critical Review. SEPARATION & PURIFICATION REVIEWS 2022. [DOI: 10.1080/15422119.2021.1922444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Qili Hu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, China
| | - Shuyue Pang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, China
| | - Dan Wang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, China
| |
Collapse
|
12
|
Yu F, Bai X, Liang M, Ma J. HKUST-1-Derived Cu@Cu(I)@Cu(II)/Carbon adsorbents for ciprofloxacin removal with high adsorption performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
A chemometric approach based on Box–Behnken and response surface methodology for design and optimization of ciprofloxacin adsorption from water. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02207-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Chang SH, Lu CC, Lin CW, Wang KS, Lee MW, Liu SH. Waste expanded polystyrene modified with H 2SO 4/biodegradable chelating agent for reuse: As a highly efficient adsorbent to remove fluoroquinolone antibiotic from water. CHEMOSPHERE 2022; 288:132619. [PMID: 34678352 DOI: 10.1016/j.chemosphere.2021.132619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Untreated wastewater containing fluoroquinolone antibiotics poses serious hazards to aquatic species and human health; therefore, treatment of waste expanded polystyrene (EPS) is a crucial environmental matter. In this study, waste EPS was modified with a H2SO4/biodegradable chelating agent, [S,S]-ethylenediamine-N,N'-disuccinic acid (EDDS), and used for highly efficient adsorption of the fluoroquinolone antibiotic ciprofloxacin. When ciprofloxacin of 25 mg/L was used, the H2SO4-modified EPS (EPSH2SO4) adsorbed 60.5% of the ciprofloxacin. During sulfonation, adding a low dose of EDDS markedly improved the adsorption ability of EPSH2SO4+EDDS. The optimal modification conditions were 95% H2SO4, 0.002 M EDDS, 80 °C, and 40 min. The increased adsorbent doses enhanced the adsorption. Approximately 0.2 g/L of EPSH2SO4+EDDS could effectively adsorb 97.8% of the ciprofloxacin (554.3 mg/g) within 30 min. Solution pH0 greatly influenced the adsorption, and the most suitable pH0 was 6. The Langmuir isotherm accurately described the adsorption behaviors of both EPSH2SO4 and EPSH2SO4+EDDS (R2 = 0.997-0.998). The adsorption ability of EPSH2SO4+EDDS (qmax = 1250 mg/g) was 32 times higher than that of EPSH2SO4 (qmax = 38.6 mg/g). A total of 1 M HCl effectively regenerated the exhausted adsorbent. The optimal solid/liquid ratio and time were 0.08 g/20 mL and 60 min, respectively. The regenerated EPSH2SO4+EDDS maintained a high adsorption ability (87.2%) after 10 regeneration cycles. The results thus indicate that the EPSH2SO4+EDDS adsorption-regeneration process is a potential approach to remove ciprofloxacin from water.
Collapse
Affiliation(s)
- Shih-Hsien Chang
- Department of Public Health, Chung-Shan Medical University, Taichung, 402, Taiwan; Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Chun-Cheng Lu
- Department of Public Health, Chung-Shan Medical University, Taichung, 402, Taiwan
| | - Chi-Wen Lin
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin, 64002, Taiwan
| | - Kai-Sung Wang
- Department of Public Health, Chung-Shan Medical University, Taichung, 402, Taiwan
| | - Ming-Wei Lee
- Department of Medical Laboratory and Biotechnology, Chung-Shan Medical University, Taichung, 402, Taiwan
| | - Shu-Hui Liu
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin, 64002, Taiwan.
| |
Collapse
|
15
|
Vasanthakumar P, Raja DS, Sindhuja D, Swaminathan S, Karvembu R. Mixed-metal MOFs as efficient catalysts for transfer hydrogenation of furfural, levulinic acid and other carbonyl compounds. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.112004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Nguyen DTC, Le HTN, Nguyen TT, Nguyen TTT, Bach LG, Nguyen TD, Tran TV. Multifunctional ZnO nanoparticles bio-fabricated from Canna indica L. flowers for seed germination, adsorption, and photocatalytic degradation of organic dyes. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126586. [PMID: 34265649 DOI: 10.1016/j.jhazmat.2021.126586] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 05/21/2023]
Abstract
The potential of green nanomaterials for environmental and agricultural fields is emerging due to their biocompatible, eco-friendly, and cost-effective performance. We report the use of Canna indica flowers extract as new capping and stabilizing source to bio-fabricate ZnO nanoparticles (ZnO NPs for dyes removal, seed germination. ZnO NPs was biosynthesized by ultrasound-assisted alkaline-free route to reach the critical green strategy. The physicochemical findings of ZnO revealed small crystallite size (27.82 nm), sufficient band-gap energy (3.08 eV), and diverse functional groups. Minimum‑run resolution IV approach found the most pivotal factors influencing on removal of Coomassie Brilliant Blue G-250. Uptake studies pointed out that pseudo second-order, and Langmuir were the best fitted models. Dye molecules behaved monolayer adsorption on ZnO surface layers, and controlled by chemisorption. Natural solar light was used as effective source for photocatalytic degradation of methylene blue (94.23% of removal and 31.09 mg/g of uptake capacity). Compared with H2O and ZnSO4, ZnO NPs positively affected the growth of shoot and root lengths (10.2-27.8%) of bean seedlings in most cases. ZnO acts an agrochemical for boosting weight gain, and germination ratio. This study may be promising for developing the recyclable, multifunctional ZnO nanoparticles for environmental and agricultural applications.
Collapse
Affiliation(s)
- Duyen Thi Cam Nguyen
- Institute of Environmental Sciences, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| | - Hanh T N Le
- Institute of Hygiene and Public Health, 159 Hung Phu, Ward 8, District 8, Ho Chi Minh City 700000, Viet Nam
| | - Thuong Thi Nguyen
- Institute of Environmental Sciences, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| | - Thi Thanh Thuy Nguyen
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Long Giang Bach
- Institute of Environmental Sciences, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| | - Trinh Duy Nguyen
- Institute of Environmental Sciences, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| | - Thuan Van Tran
- Institute of Environmental Sciences, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| |
Collapse
|
17
|
Yao J, Deng Y, Pan S, Korna R, Wen J, Yuan N, Wang K, Li H, Yang Y. The difference in the adsorption mechanisms of magnetic ferrites modified carbon nanotubes. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125551. [PMID: 33756199 DOI: 10.1016/j.jhazmat.2021.125551] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 05/27/2023]
Abstract
Various ferrites modified carbon nanotubes (MFe2O4/CNTs; M = Co, Cu, Mn) were synthesized and characterized using TEM-EDS, FTIR, BET, TG-DTA, VSM, and XRD. MFe2O4/CNTs were used as adsorbents for removing ciprofloxacin (CIP), and the adsorption mechanism was revealed in a comparative manner based on the experimental results and density functional theory calculations. The adsorption capacities of CIP on MFe2O4/CNTs were 63.32 (Co), 61.60 (Cu), and 46.35 (Mn) mg/g, respectively. Different M components of MFe2O4 affected the adsorption behavior of CIP on them, while the specific surface area and total pore volume showed no significant impact. The investigation on the adsorption energy and the bond formation indicated that CIP was more favorably captured by CoFe2O4/CuFe2O4 than MnFe2O4. The local density of states of metal atoms and O atoms (from the ketone or carboxyl groups of CIP) showed that the d-band centers of Co and Cu atoms were above the Fermi level, while that of Mn was below the Fermi level, providing the fundamental understanding of the promoted O adsorption on CoFe2O4 and CuFe2O4 and restrained adsorption on MnFe2O4. This observation was supported by the electron localization function in terms of the stronger charge density overlap between Co-O/Cu-O than that of Mn-O.
Collapse
Affiliation(s)
- Jingjing Yao
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Yi Deng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Siyuan Pan
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Ramon Korna
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jiayi Wen
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Nadi Yuan
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Kun Wang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| | - Ying Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| |
Collapse
|
18
|
Wang Y, Xie Y, Zheng Z, Zeng D, Dai Y, Zhang Z, Cao X, Zou R, Liu Y. Surfactant-assisted adsorption of uranyl ions in aqueous solution on TiO 2/polythiophene nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37182-37194. [PMID: 33713259 DOI: 10.1007/s11356-021-12587-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
In this work, hexadecyltrimethylammonium-bromide (HTAB)-modified polythiophene (PTh)/TiO2 nanocomposite (HTAB/PTh/TiO2) was applied to remove uranyl ions (UO22+). FT-IR, XRD, ζ potential, TGA, SEM, and XPS were utilized to obtain the chemical and physical properties of HTAB/PTh/TiO2. The effects of HTAB content, preparation temperature, and adsorption conditions on UO22+ removal were investigated comprehensively. And the UO22+ adsorption process on HTAB/PTh/TiO2 was fitted to the Sips model with a saturated adsorption capacity of 234.74 mg/g, which was 6 times over TiO2. The results suggested that the surfactant of HTAB can significantly improve the adsorption ability of TiO2 for UO22+ ions. This work provides a strategy of surfactant modification for enhancing the separation and recovery ability of adsorbent toward UO22+ in the radioactive wastewater.
Collapse
Affiliation(s)
- Youqun Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
- Engineering Research Center of Nuclear Technology Application, East China University of Technology, Nanchang, 330013, Jiangxi, China
- Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Yinghui Xie
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
- Engineering Research Center of Nuclear Technology Application, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Zhiyang Zheng
- Engineering Research Center of Nuclear Technology Application, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Dejun Zeng
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
- Engineering Research Center of Nuclear Technology Application, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Ying Dai
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
- Engineering Research Center of Nuclear Technology Application, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Zhibin Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
- Engineering Research Center of Nuclear Technology Application, East China University of Technology, Nanchang, 330013, Jiangxi, China
- Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Xiaohong Cao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China.
- Engineering Research Center of Nuclear Technology Application, East China University of Technology, Nanchang, 330013, Jiangxi, China.
- Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| | - Rong Zou
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
- Engineering Research Center of Nuclear Technology Application, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Yunhai Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China.
- Engineering Research Center of Nuclear Technology Application, East China University of Technology, Nanchang, 330013, Jiangxi, China.
- Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
19
|
Feiz E, Mahyari M, Ghaieni HR, Tavangar S. Copper on chitosan-modified cellulose filter paper as an efficient dip catalyst for ATRP of MMA. Sci Rep 2021; 11:8257. [PMID: 33859302 PMCID: PMC8050047 DOI: 10.1038/s41598-021-87755-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/01/2021] [Indexed: 11/09/2022] Open
Abstract
Achieving an efficient catalyst in the ATRP system with a simple design, preparation from available materials, and high recyclability is a significant challenging issue. To attain the goal, herein, we used chitosan (CS)-modified cellulose filter paper (FP) as a green support for the synthesis of dip catalyst. The preparation of this catalyst involved surface treatment of the FP strips by CS coating through a dipping method, which increased the affinity of the substrate for adsorbing copper ions in the next step. The Cu@CS-FP catalyst was prepared without the requirement of any ligands. The synthesized dip-catalyst, in the form of the strips, was employed for the first time in the ATRP reaction of methyl methacrylate to assay catalytic activity. Catalytic insertion/ removal (ON/OFF) experiments were carried out during the polymerization. A reasonable control over the molecular weight with high conversion (68%) and polydispersity index of 1.32 under mild reaction conditions were obtained. Significantly, because of the facile separation of the catalyst, the amount of copper that remained in the polymer was very low (2.7 ppm). Also, the recyclability of the catalyst was investigated for five runs. The conversion in the final run was 64% without a loss of catalyst efficiency.
Collapse
Affiliation(s)
- Elham Feiz
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| | - Mojtaba Mahyari
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran.
| | - Hamid Reza Ghaieni
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| | - Saeed Tavangar
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
20
|
Rego RM, Kuriya G, Kurkuri MD, Kigga M. MOF based engineered materials in water remediation: Recent trends. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123605. [PMID: 33264853 DOI: 10.1016/j.jhazmat.2020.123605] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 05/25/2023]
Abstract
The significant upsurge in the demand for freshwater has prompted various developments towards water sustainability. In this context, several materials have gained remarkable interest for the removal of emerging contaminants from various freshwater sources. Among the currently investigated materials for water treatment, metal organic frameworks (MOFs), a developing class of porous materials, have provided excellent platforms for the separation of several pollutants from water. The structural modularity and the striking chemical/physical properties of MOFs have provided more room for target-specific environmental applications. However, MOFs limit their practical applications in water treatment due to poor processability issues of the intrinsically fragile and powdered crystalline forms. Nevertheless, growing efforts are recognized to impart macroscopic shapability to render easy handling shapes for real-time industrial applications. Furthermore, efforts have been devoted to improve the stabilities of MOFs that are subjected to fragile collapse in aqueous environments expanding their use in water treatment. Advances made in MOF based material design have headed towards the use of MOF based aerogels/hydrogels, MOF derived carbons (MDCs), hydrophobic MOFs and magnetic framework composites (MFCs) to remediate water from contaminants and for the separation of oils from water. This review is intended to highlight some of the recent trends followed in MOF based material engineering towards effective water regeneration.
Collapse
Affiliation(s)
- Richelle M Rego
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Gangalakshmi Kuriya
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Mahaveer D Kurkuri
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru, 562112, Karnataka, India.
| | - Madhuprasad Kigga
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru, 562112, Karnataka, India.
| |
Collapse
|
21
|
Shahnaz T, Vishnu Priyan V, Pandian S, Narayanasamy S. Use of Nanocellulose extracted from grass for adsorption abatement of Ciprofloxacin and Diclofenac removal with phyto, and fish toxicity studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115494. [PMID: 33152600 DOI: 10.1016/j.envpol.2020.115494] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/03/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
The present study deals with the adsorption of antibiotic Ciprofloxacin (CPXO) and anti-inflammatory agent Diclofenac (DCF) on Grass nanocellulose (GNC) extracted from Cyprus rotundas grass. The adsorbent GNC was characterised using various microscopic, elemental and spectroscopic analysis to monitor the physicochemical alterations of the surface before and after adsorption. The size of the converted nanocellulose was found to be 40-50 nm. The experimental measures influencing the adsorption of CPXO and DCF that were optimised are initial solution pH, GNC dosage, temperature and initial concentration of the adsorbate. Halsey isotherm model and pseudo-second order kinetic model agreed best with the experimental outcome for both the adsorbate. The maximum adsorption capacity of GNC were 227.223 and 192.307 mg/g for CPXO and DCF respectively. Phytotoxicity studies were performed using 6 different types of seeds to evaluate the effect of GNC treated effluent on plants. Similarly, acute fish toxicity on zebra fish analysis showed to have lesser mortality rate of the effluent after adsorption of CPXO and DCF on GNC.
Collapse
Affiliation(s)
- Tasrin Shahnaz
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - V Vishnu Priyan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sivakumar Pandian
- School of Petroleum Technology, Pandit Deendayal Petroleum University, Gandhinagar, Gujrat, 382007, India
| | - Selvaraju Narayanasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
22
|
Gayathri R, Gopinath KP, Kumar PS. Adsorptive separation of toxic metals from aquatic environment using agro waste biochar: Application in electroplating industrial wastewater. CHEMOSPHERE 2021; 262:128031. [PMID: 33182077 DOI: 10.1016/j.chemosphere.2020.128031] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
In this research, raw jujube seeds (RJS) treated with sulphuric acid followed by ultrasonic treatment such as ultrasonic assisted jujube seeds (UAJS) based biochar have been experimented as a viable material for treating Zn(II) and Pb(II) contaminated water. The adsorption ability of UAJS was compared with RJS through Langmuir adsorption capacity. The produced adsorbents were analysed by using BET surface area and thermogravimetric analyses. The removal kinetics, isotherms and thermodynamic behaviours of metal ions adsorption by UAJS were studied. Adsorption equilibrium data were analysed using various equilibrium models and Freundlich isotherm was appropriate towards explain the adsorption characteristics. UAJS Langmuir capacity of 221.1 mg/g and 119.8 mg/g were obtained for Zn(II) ions and Pb(II) ions, respectively. The results observed that UAJS holds higher capacity as compared with RJS. The pseudo-first order model was relevant to address adsorption behaviour. The mechanism on the separation of metal ions by UAJS was tested using diffusion and Boyd models. The mechanism outcomes observed that the internal and external diffusion controlled the separation process. The thermodynamic results explain the separation process was viable, exothermic and natural. The electroplating industrial wastewater was also treated with UAJS biochar to remove the metal ions such as copper, nickel, chromium and zinc ions from wastewater. Desorption process showed that 0.1 N HCl provide the good results as compared with other desorbing agents. The adsorbent property is not lost till the maximum of 5 adsorption/desorption cycles. The produced UAJS can be a better adsorbent for treating the heavy metal polluted wastewater.
Collapse
Affiliation(s)
- R Gayathri
- Tamilnadu Pollution Control Board, Guindy, Chennai, 600032, India; Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - K P Gopinath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| |
Collapse
|
23
|
|
24
|
Removal of aqueous Cr(VI) by magnetic biochar derived from bagasse. Sci Rep 2020; 10:21473. [PMID: 33293648 PMCID: PMC7722720 DOI: 10.1038/s41598-020-78142-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/11/2020] [Indexed: 01/24/2023] Open
Abstract
We prepared a novel adsorbent functionalized by bagasse magnetic biochar (BMBC). To study the removal behaviors and mechanisms of Cr(VI) by BMBC, batch adsorption experiments were conducted by modifying variables, such as pH, adsorption time, BMBC dosages, initial Cr concentration, co-existing ions, and ionic strength, and characterizing BMBC before and after Cr(VI) adsorption. BMBC was primarily composed of Fe2O3 and Fe3O4 on bagasse boichar with an amorphous structure. The specific surface area of BMBC was 81.94 m2 g−1, and the pHpzc of BMBC was 6.2. The fabricated BMBC showed high adsorption performance of Cr(VI) in aqueous solution. The maximum Cr(VI) adsorption capacity of BMBC was 29.08 mg g−1 at 25 ºC, which was much higher than that of conventional biochar sorbents. The adsorption process followed pseudo-second-order kinetics and could be explained by the involvement of the Langmuir isotherm in monolayer adsorption. The crystalline structure of Fe3O4 in the BMBC changed slightly during the adsorption process; Fe3O4 improved the adsorption of Cr(VI) on BMB. The desorption capacity of Cr(VI) was 8.21 mg g−1 when 0.2 mol L−1 NaOH was used as the desorption solution. After being reused three times, the removal efficiency is still as high as 80.36%.
Collapse
|
25
|
Tran TV, Nong LX, Nguyen HTT, Nguyen VH, Nguyen DTC, Nguyen TT, Trang PQ, Nguyen DH, Nguyen TD. Response surface methodology modeling for methylene blue removal by chemically modified porous carbon: Adsorption mechanism and role of surface functional groups. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1820523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Thuan Van Tran
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Linh Xuan Nong
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Hong-Tham T. Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Vinh Huu Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | | | - Thuong Thi Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Pham Quynh Trang
- Laboratory of Material and Environment Technology, Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi City, Vietnam
| | - Dai Hai Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh city, Vietnam
| | - Trinh Duy Nguyen
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
26
|
Metal-Organic-Framework FeBDC-Derived Fe 3O 4 for Non-Enzymatic Electrochemical Detection of Glucose. SENSORS 2020; 20:s20174891. [PMID: 32872490 PMCID: PMC7506652 DOI: 10.3390/s20174891] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Abstract
Present-day science indicates that developing sensors with excellent sensitivity and selectivity for detecting early signs of diseases is highly desirable. Electrochemical sensors offer a method for detecting diseases that are simpler, faster, and more accurate than conventional laboratory analysis methods. Primarily, exploiting non-noble-metal nanomaterials with excellent conductivity and large surface area is still an area of active research due to its highly sensitive and selective catalysts for electrochemical detection in enzyme-free sensors. In this research, we successfully fabricate Metal-Organic Framework (MOF) FeBDC-derived Fe3O4 for non-enzymatic electrochemical detection of glucose. FeBDC synthesis was carried out using the solvothermal method. FeCl2.4H2O and Benzene-1,4-dicarboxylic acid (H2BDC) are used as precursors to form FeBDC. The materials were further characterized utilizing X-ray Powder Diffraction (XRD), Scanning Electron Microscopy (SEM), and Fourier-Transform Infrared Spectroscopy (FTIR). The resulting MOF yields good crystallinity and micro-rod like morphology. Electrochemical properties were tested using Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) with a 0.1 M of Phosphate Buffer Saline (PBS pH 7.4) solution as the supporting electrolyte. The measurement results show the reduction and oxidation peaks in the CV curve of FeBDC, as well as Fe3O4. Pyrolysis of FeBDC to Fe3O4 increases the peak of oxidation and reduction currents. The Fe3O4 sample obtained has a sensitivity of 4.67 µA mM−1.cm−2, a linear range between 0.0 to 9.0 mM, and a glucose detection limit of 15.70 µM.
Collapse
|
27
|
High performance of Mn2(BDC)2(DMF)2-derived MnO@C nanocomposite as superior remediator for a series of emergent antibiotics. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113038] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|