1
|
Chen Y, Fogel A, Bi Y, Yen CC. Factors associated with eating rate: a systematic review and narrative synthesis informed by socio-ecological model. Nutr Res Rev 2024; 37:376-395. [PMID: 37749936 DOI: 10.1017/s0954422423000239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Accumulating evidence shows associations between rapid eating and overweight. Modifying eating rate might be a potential weight management strategy without imposing additional dietary restrictions. A comprehensive understanding of factors associated with eating speed will help with designing effective interventions. The aim of this review was to synthesise the current state of knowledge on the factors associated with eating rate. The socio-ecological model (SEM) was utilised to scaffold the identified factors. A comprehensive literature search of eleven databases was conducted to identify factors associated with eating rate. The 104 studies that met the inclusion criteria were heterogeneous in design and methods of eating rate measurement. We identified thirty-nine factors that were independently linked to eating speed and mapped them onto the individual, social and environmental levels of the SEM. The majority of the reported factors pertained to the individual characteristics (n = 20) including demographics, cognitive/psychological factors and habitual food oral processing behaviours. Social factors (n = 11) included eating companions, social and cultural norms, and family structure. Environmental factors (n = 8) included food texture and presentation, methods of consumption or background sounds. Measures of body weight, food form and characteristics, food oral processing behaviours and gender, age and ethnicity were the most researched and consistent factors associated with eating rate. A number of other novel and underresearched factors emerged, but these require replication and further research. We highlight directions for further research in this space and potential evidence-based candidates for interventions targeting eating rate.
Collapse
Affiliation(s)
- Yang Chen
- Division of Industrial Design, National University of Singapore, Singapore
- Keio-NUS CUTE Center, National University of Singapore, Singapore
| | - Anna Fogel
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yue Bi
- Department of Psychology, National University of Singapore, Singapore
| | - Ching Chiuan Yen
- Division of Industrial Design, National University of Singapore, Singapore
- Keio-NUS CUTE Center, National University of Singapore, Singapore
| |
Collapse
|
2
|
He J, Wang W, Hao M, Huang Y, CHen L. Effect of ultrasonic treatment on the oral processing characteristics of Mianning ham. Front Nutr 2024; 11:1396623. [PMID: 39279899 PMCID: PMC11392900 DOI: 10.3389/fnut.2024.1396623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
In this paper, the effect of ultrasonic treatment on the oral processing characteristics of Mianning ham was investigated. A sensory evaluation team of 10 evaluators with food professional background was involved in food mastication and dough collection. Oral processing analysis of ultrasonically treated hams was performed using particle distribution analysis, Headspace Solid-Phase Microextraction Gas Chromatography-Mass Spectrometry (SPME-GC-MS), electronic nose, and dynamic dominant sensory attribute testing. The results showed that compared with the control group, the chewing time and the number of chewing times of the ultrasonically treated hams during oral processing were significantly increased, the salivary content in the ham eating dough was significantly reduced, the types and contents of flavor substances were significantly increased, and the ultrasonic treatment significantly reduced the dominant organoleptic attributes such as saltiness and sourness of the Mianning hams. This paper takes Mianning ham bolus as the research object, analyzes the influence of ultrasonic treatment on the flavor perception of Mianning ham, and provides a theoretical basis for the optimization of ham back-end processing technology.
Collapse
Affiliation(s)
- Jiaju He
- Key Laboratory of Meat Processing in Sichuan Province, Chengdu University, Chengdu, China
| | - Wenli Wang
- Key Laboratory of Meat Processing in Sichuan Province, Chengdu University, Chengdu, China
| | - Mai Hao
- Key Laboratory of Meat Processing in Sichuan Province, Chengdu University, Chengdu, China
| | - Yue Huang
- Key Laboratory of Meat Processing in Sichuan Province, Chengdu University, Chengdu, China
| | - Lin CHen
- Key Laboratory of Meat Processing in Sichuan Province, Chengdu University, Chengdu, China
| |
Collapse
|
3
|
Meldrum OW, Yakubov GE. Journey of dietary fiber along the gastrointestinal tract: role of physical interactions, mucus, and biochemical transformations. Crit Rev Food Sci Nutr 2024:1-29. [PMID: 39141568 DOI: 10.1080/10408398.2024.2390556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Dietary fiber-rich foods have been associated with numerous health benefits, including a reduced risk of cardiovascular and metabolic diseases. Harnessing the potential to deliver positive health outcomes rests on our understanding of the underlying mechanisms that drive these associations. This review addresses data and concepts concerning plant-based food functionality by dissecting the cascade of physical and chemical digestive processes and interactions that underpin these physiological benefits. Functional transformations of dietary fiber along the gastrointestinal tract from the stages of oral processing and gastric emptying to intestinal digestion and colonic fermentation influence its capacity to modulate digestion, transit, and commensal microbiome. This analysis highlights the significance, limitations, and challenges in decoding the complex web of interactions to establish a coherent framework connecting specific fiber components' molecular and macroscale interactions across multiple length scales within the gastrointestinal tract. One critical area that requires closer examination is the interaction between fiber, mucus barrier, and the commensal microbiome when considering food structure design and personalized nutritional strategies for beneficial physiologic effects. Understanding the response of specific fibers, particularly concerning an individual's physiology, will offer the opportunity to exploit these functional characteristics to elicit specific, symptom-targeting effects or use fiber types as adjunctive therapies.
Collapse
Affiliation(s)
- Oliver W Meldrum
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Gleb E Yakubov
- Soft Matter Biomaterials and Biointerfaces, School of Biosciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
4
|
Capasso G, Neves D, Sperduti A, Cristiani E, Manzo A. Direct evidence of plant consumption in Neolithic Eastern Sudan from dental calculus analysis. Sci Rep 2024; 14:4278. [PMID: 38383568 PMCID: PMC10882051 DOI: 10.1038/s41598-024-53300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
The Neolithic communities of Eastern Sudan combined intensive pastoralism with plant exploitation as their main subsistence strategies. However, to date, it remains unclear which plant species were part of the human diet during the Neolithic. This contribution presents direct data on plant consumption in Eastern Sudan from the Early to Late Neolithic, obtained through the analysis of microdebris inclusions in the dental calculus of 37 individuals, integrated by dentoalveolar pathology analysis of 78 individuals, from the sites UA53 (4th millennium BCE) and Mahal Teglinos (3rd-2nd millennium BCE), located in the Gash Delta/Kassala region. Dental calculus inclusions indicate a diverse intake of cereals, legumes, and tubers during the Middle Neolithic, thus supporting the hypothesis of high reliance on plant resources. Dentoalveolar pathologies, possibly related to the consumption of carbohydrate-rich foods, have also been recorded. For the Late Neolithic, consistent with the shift towards aridity that occurred in the Middle/Late Holocene, dental calculus exclusively indicates the exploitation of sorghum and tubers-species well adapted to arid conditions-showing how the Neolithic communities modified their subsistence in response to environmental changes. Evidence of plant processing techniques, such as cooking/heating, was also revealed from the dental calculus analysis.
Collapse
Affiliation(s)
- Giusy Capasso
- Department of Cultural Heritage, University of Padua, Padua, Italy.
| | - Dulce Neves
- Research Centre for Anthropology and Health, University of Coimbra, Coimbra, Portugal
- Department of History, Anthropology, Religions, and Performing Arts, Sapienza University of Rome, Rome, Italy
| | - Alessandra Sperduti
- Bioarchaeology Service, Museum of Civilizations, Rome, Italy
- Department of Asian, African and Mediterranean Studies, University 'L'Orientale', Naples, Italy
| | - Emanuela Cristiani
- DANTE - Diet and ANcient TEchnology Laboratory, Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, Rome, Italy.
| | - Andrea Manzo
- Department of Asian, African and Mediterranean Studies, University 'L'Orientale', Naples, Italy
| |
Collapse
|
5
|
Abstract
Food-based dietary guidelines have been the basis of public health recommendations for over half a century, but more recently, there has been a trend to classify the health properties of food not by its nutrient composition, but by the degree to which it has been processed. This concept has been supported by many association studies, narrative reviews and the findings from one randomised controlled feeding trial, which demonstrated the sustained effect of ultra-processed diets on increasing both energy intake and body weight. This has led to widespread speculation as to specific features of ultra-processed foods that promote increased energy intakes. Rising interest in the ultra-processed topic has led to proposals to include guidance and restrictions on the consumption of processed foods in national dietary guidelines, with some countries encouraging consumers to avoid highly processed foods completely, and only choose minimally processed foods. However, there remains a lack of consensus on the role of processed foods in human health when faced with the challenges of securing the food supply for a growing global population, that is, healthy, affordable and sustainable. There has also been criticism of the subjective nature of definitions used to differentiate foods by their degree of processing, and there is currently a lack of empirical data to support a clear mechanism by which highly processed foods promote greater energy intakes. Recommendations to avoid all highly processed foods are potentially harmful if they remove affordable sources of nutrients and will be impractical for most when an estimated two-thirds of current energy purchased are from processed or ultra-processed foods. The current review highlights some considerations when interpreting the dietary association studies that link processed food intake to health and offers a critique on some of the mechanisms proposed to explain the link between ultra-processed food and poor health. Recent research suggests a combination of higher energy density and faster meal eating rates are likely to influence meal size and energy intakes from processed foods and offers new perspectives on how to manage this in the future. In going beyond the ultra-processed debate, the aim is to summarise some important considerations when interpreting existing data and identify the important gaps for future research on the role of processed food in health.
Collapse
Affiliation(s)
- Ciarán G Forde
- Sensory Science and Eating Behaviour, Division of Human Nutrition and Health, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
6
|
Popov S, Smirnov V, Khramova D, Paderin N, Chistiakova E, Ptashkin D, Vityazev F. Effect of Hogweed Pectin on Rheological, Mechanical, and Sensory Properties of Apple Pectin Hydrogel. Gels 2023; 9:gels9030225. [PMID: 36975674 PMCID: PMC10048469 DOI: 10.3390/gels9030225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
This study aims to develop hydrogels from apple pectin (AP) and hogweed pectin (HP) in multiple ratios (4:0; 3:1; 2:2; 1:3; and 0:4) using ionotropic gelling with calcium gluconate. Rheological and textural analyses, electromyography, a sensory analysis, and the digestibility of the hydrogels were determined. Increasing the HP content in the mixed hydrogel increased its strength. The Young’s modulus and tangent after flow point values were higher for mixed hydrogels than for pure AP and HP hydrogels, suggesting a synergistic effect. The HP hydrogel increased the chewing duration, number of chews, and masticatory muscle activity. Pectin hydrogels received the same likeness scores and differed only in regard to perceived hardness and brittleness. The galacturonic acid was found predominantly in the incubation medium after the digestion of the pure AP hydrogel in simulated intestinal (SIF) and colonic (SCF) fluids. Galacturonic acid was slightly released from HP-containing hydrogels during chewing and treatment with simulated gastric fluid (SGF) and SIF, as well as in significant amounts during SCF treatment. Thus, new food hydrogels with new rheological, textural, and sensory properties can be obtained from a mixture of two low-methyl-esterified pectins (LMPs) with different structures.
Collapse
|
7
|
Janani R, Tan VWK, Goh AT, Choy MJY, Lim AJ, Teo PS, Stieger M, Forde CG. Independent and combined impact of texture manipulation on oral processing behaviours among faster and slower eaters. Food Funct 2022; 13:9340-9354. [PMID: 36017675 DOI: 10.1039/d2fo00485b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: Food texture can moderate eating rate and ad libitum energy intake. Many foods are combined with condiments when consumed and the texture and eating properties differ considerably between condiments and carrier foods. Little is known about how combinations of textures impact oral processing or whether these differences are affected by individual eating-styles. Objective: We investigated the impact of texture parameters (unit size, thickness, hardness and lubrication) on oral processing behaviours for carrots and rice-crackers, and tested whether these behaviours differ between 'faster' and 'slower' eaters. Method: Seventy participants (34 males, 26.0 ± 5.4 years, BMI = 21.5 ± 1.7 kg m-2) consumed 24 weight-matched carrot samples varying in unit size (large/medium/small), thickness (thick/thin), hardness (hard/soft) and lubrication (with/without mayonnaise). In a second step, participants consumed 8 weight-matched cracker samples varying in unit size (large/small), hardness (hard/soft) and lubrication (with/without mayonnaise). Sample consumption was video-recorded for post hoc behavioural annotation to derive specific oral processing behaviours. Participants were divided into 'faster' or 'slower' eater groups using a post hoc median split based on eating rate of raw carrot. Results: Across texture parameters, hardness had the largest influence (p < 0.001) on eating rate for both carrots and crackers. The independent texture differences for carrot ranked from most to least impact on eating rate was hardness > thickness > lubrication > unit size. For crackers, the rank order of eating rate was hardness > lubrication > unit size. Harder carrot samples with decreased unit size and reduced thickness combined had a larger synergistic effect in reducing eating rate (p < 0.001) than manipulation of any single texture parameter alone. Reducing the unit size of crackers while increasing hardness without lubrication combined (p = 0.015) to produce the largest reduction in eating rate. There were no significant differences between fast and slow eaters on their oral processing behaviours across texture manipulations. Conclusions: Combinations of texture manipulations have the largest impact in moderating oral processing behaviours, and this is consistent across 'faster' and 'slower' eaters. Changing food-texture presents an effective strategy to guide reformulation of product sensory properties to better regulate eating rate and energy intake, regardless of an individual's natural eating-style.
Collapse
Affiliation(s)
- R Janani
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Vicki Wei Kee Tan
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Ai Ting Goh
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Michelle Jie Ying Choy
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Amanda JiaYing Lim
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Pey Sze Teo
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Markus Stieger
- Wageningen University, Sensory Science and Eating Behaviour, Division of Human Nutrition and Health, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Ciarán G Forde
- Wageningen University, Sensory Science and Eating Behaviour, Division of Human Nutrition and Health, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
8
|
Forde CG, Bolhuis D. Interrelations Between Food Form, Texture, and Matrix Influence Energy Intake and Metabolic Responses. Curr Nutr Rep 2022; 11:124-132. [PMID: 35325399 PMCID: PMC9174310 DOI: 10.1007/s13668-022-00413-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Nutrition often focuses on food composition, yet differences in food form, texture, and matrix influence energy intake and metabolism. This review outlines how these attributes of food impact oral processing, energy intake, and metabolism. RECENT FINDINGS Food form has a well-established impact on intake, where liquids are consumed more than solids and semi-solids. For solids, texture properties like thickness, hardness, and lubrication, and geometrical properties like size and shape influence oral processing, eating rate, and intake. Food matrix integrity can influence nutrient and energy absorption and is strongly influenced by food processing. Food texture and matrix play important roles in modulating energy intake and absorption. Future research needs to consider the often overlooked role of texture and matrix effects on energy and metabolic responses to composite foods and meals. Research is needed to understand how processing impacts macro- and micro-structure of food and its long-term impact on energy balance and health.
Collapse
Affiliation(s)
- Ciarán G Forde
- Sensory Science and Eating Behaviour, Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, the Netherlands.
| | - Dieuwerke Bolhuis
- Food Quality and Design, Division of Food Technology, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
9
|
A Review of In Vitro Methods for Measuring the Glycemic Index of Single Foods: Understanding the Interaction of Mass Transfer and Reaction Engineering by Dimensional Analysis. Processes (Basel) 2022. [DOI: 10.3390/pr10040759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Glycemic Index (GI) has been described by an official method ISO (International Organization for Standardization) 26642:2010 for labeling purposes. The development of in vitro methods for GI measurement has faced significant challenges. Mass transfer and reaction engineering theory may assist in providing a quantitative understanding of in vitro starch digestion and glycemic response from an engineering point of view. We suggest that in vitro GI measurements should consider the mouth and the stomach in terms of fluid mechanics, mass transfer, length scale changes, and food-solvent reactions, and might consider a significant role for the intestine as an absorption system for the glucose that is generated before the intestine. Applying mass transfer and reaction engineering theory may be useful to understand quantitative studies of in vitro GI measurements. The relative importance of reactions and mass-transfer has been estimated from literature measurements through estimating the Damköhler numbers (Da), and the values estimated of this dimensionless group (0.04–2.9) suggest that both mass transfer and chemical reaction are important aspects to consider.
Collapse
|
10
|
Jin X, Lin S, Gao J, Kim EHJ, Morgenstern MP, Wilson AJ, Agarwal D, Wadamori Y, Wang Y, Ying J, Dong Z, Zhou W, Song X, Zhao Q. Ethnicity impact on oral processing behaviour and glycemic response to noodles: Chinese (Asian) vs. New Zealander (Caucasian). Food Funct 2022; 13:3840-3852. [PMID: 35315467 DOI: 10.1039/d1fo04078b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is an increasing awareness of the link between food breakdown during chewing and its nutrient release and absorption in the gastrointestinal tract. However, how oral processing behaviour varies among different ethnic groups, and how such difference further impacts on bolus characteristics and consequently glycemic response (GR) are not well understood. In this study, we recruited a group of Asian (Chinese) subjects in China (n = 32) and a group of Caucasian subjects in New Zealand (n = 30), both aged between 18 and 30 years, and compared their blood glucose level (BGL) over 120 min following consumption of a glucose drink and cooked white noodles. We also assessed their chewing behaviour, unstimulated saliva flow rate, and ready-to-swallow bolus characteristics to determine whether these measures explain the ethnic differences in postprandial glycaemia. Compared to New Zealand subjects, the Chinese subjects showed 35% slower saliva flow rate but around 2 times higher salivary α-amylase activity in the unstimulated state. During consumption of noodles, Chinese subjects on average took a larger mouthful size, chewed each mouthful for longer and swallowed a larger number of particles with a smaller particle size area. Total GR measured by area under the curve (IAUC) was higher among the Chinese subjects. They also experienced higher BGL at 15 min, as well as higher peak BGL. There were strong correlations observed between oral processing and GR parameters. Results of this study confirmed the significance of oral processing in determining food digestion, and will provide new insights on the role of ethnicity in influencing people's physiological response to food.
Collapse
Affiliation(s)
- Xiaoxuan Jin
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore.,National University of Singapore (Suzhou) Research Institute, Jiangsu 215123, China
| | - Suyun Lin
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore.,National University of Singapore (Suzhou) Research Institute, Jiangsu 215123, China
| | - Jing Gao
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore.,National University of Singapore (Suzhou) Research Institute, Jiangsu 215123, China
| | - Esther H-J Kim
- The New Zealand Institute for Plant & Food Research Limited, 74 Gerald Street, Lincoln 7608, New Zealand. .,Riddet Institute, Palmerston North, New Zealand
| | - Marco P Morgenstern
- The New Zealand Institute for Plant & Food Research Limited, 74 Gerald Street, Lincoln 7608, New Zealand. .,Riddet Institute, Palmerston North, New Zealand
| | - Arran J Wilson
- The New Zealand Institute for Plant & Food Research Limited, 74 Gerald Street, Lincoln 7608, New Zealand.
| | - Deepa Agarwal
- The New Zealand Institute for Plant & Food Research Limited, 74 Gerald Street, Lincoln 7608, New Zealand.
| | - Yukiko Wadamori
- The New Zealand Institute for Plant & Food Research Limited, 74 Gerald Street, Lincoln 7608, New Zealand.
| | - Yong Wang
- COFCO Nutrition & Health Research Institute, Beijing 102209, China.
| | - Jian Ying
- COFCO Nutrition & Health Research Institute, Beijing 102209, China.
| | - Zhizhong Dong
- COFCO Nutrition & Health Research Institute, Beijing 102209, China.
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore.,National University of Singapore (Suzhou) Research Institute, Jiangsu 215123, China
| | - Xiaoming Song
- Peking University Health Science Centre, Beijing 100191, China
| | - Qian Zhao
- Peking University Health Science Centre, Beijing 100191, China
| |
Collapse
|
11
|
Wu Y, Fan Z, Lou X, Zhao W, Lu X, Hu J, Han Y, Liu A. Combination of Texture-Induced Oral Processing and Vegetable Preload Strategy Reduced Glycemic Excursion but Decreased Insulin Sensitivity. Nutrients 2022; 14:nu14071318. [PMID: 35405931 PMCID: PMC9000770 DOI: 10.3390/nu14071318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to investigate the effect of the oral processing of vegetables induced by texture modification on acute postprandial glycemic response (GR) and insulin response (IR) when co-ingested and ingested prior to a rice meal. In a randomized crossover trial, 14 healthy female subjects consumed (1) co-ingestion of soft broccoli and rice (SR); (2) co-ingestion of hard broccoli and rice (HR); (3) soft broccoli prior to rice (S+R); (4) hard broccoli prior to rice (H+R); (5) rice (R). Postprandial GR and IR was compared between test meals over a period of 180-min, and the oral processing behaviors were measured for each test food samples. Hard broccoli was observed to have a higher mastication time and chews than soft broccoli. All the broccoli meals resulted in reduced incremental peak glucose (IPG) and an increased incremental area under the insulin curve in 180 min (iAUC0–180) compared with R. The S+R curbed the IPG by 40% with comparable HOMA-IR AUC0–180 compared with R, while the H+R elevated the HOMA-IR AUC0–180 by 62% more than that of R. In conclusion, the soft broccoli intake prior to a rice meal effectively attenuated postprandial GR, without lowering insulin sensitivity as its hard counterpart did.
Collapse
Affiliation(s)
- Yixue Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.W.); (X.L.); (W.Z.); (X.L.); (J.H.); (Y.H.); (A.L.)
| | - Zhihong Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.W.); (X.L.); (W.Z.); (X.L.); (J.H.); (Y.H.); (A.L.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Correspondence: ; Tel.: +86-10-6273-7717
| | - Xinling Lou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.W.); (X.L.); (W.Z.); (X.L.); (J.H.); (Y.H.); (A.L.)
| | - Wenqi Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.W.); (X.L.); (W.Z.); (X.L.); (J.H.); (Y.H.); (A.L.)
| | - Xuejiao Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.W.); (X.L.); (W.Z.); (X.L.); (J.H.); (Y.H.); (A.L.)
| | - Jiahui Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.W.); (X.L.); (W.Z.); (X.L.); (J.H.); (Y.H.); (A.L.)
| | - Yue Han
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.W.); (X.L.); (W.Z.); (X.L.); (J.H.); (Y.H.); (A.L.)
| | - Anshu Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.W.); (X.L.); (W.Z.); (X.L.); (J.H.); (Y.H.); (A.L.)
| |
Collapse
|
12
|
Forde CG, de Graaf K. Influence of Sensory Properties in Moderating Eating Behaviors and Food Intake. Front Nutr 2022; 9:841444. [PMID: 35265658 PMCID: PMC8899294 DOI: 10.3389/fnut.2022.841444] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/27/2022] [Indexed: 11/20/2022] Open
Abstract
Sensory properties inform likes and dislikes, but also play an important functional role in guiding food choice and intake behavior. Odors direct food choice and stimulate sensory-specific appetites and taste helps to anticipate calorie and nutrient content of food. Food textures moderate eating rate and the energy consumed to satiation and post-ingestive metabolism. We summarize how sensory cues moderate intake, and highlight opportunities to apply sensory approaches to improve dietary behavior. Salt, sweet and savory taste influence liking, but also influence energy intake to fullness, with higher taste intensity and duration linked to lower intake. Psycho-physical studies show it is relatively easy to rank taste intensities at different concentrations but more challenging to discriminate fat contents, and fat discrimination declines further when combined with high-taste intensity. Fat has low impact on sensory intensity, but makes significant contributions to energy content. Combinations of high taste and fat-content can promote passive energy over-consumption, and adding fat also increases energy intake rate (kcals/min), reducing opportunities to orally meter consumption. Consumers adapt their oral processing behaviors to a foods texture, which can influence the rate and extent of energy intake. Understanding how texture influences eating behaviors and bolus formation, affords new opportunities to impact eating rate, energy intake and metabolic response to food. Food formulation has traditionally focused on composition and sensory appeal. Future research needs to consider the role of sensory properties in moderating consumer interaction with their food environment, and how they influence calorie selection, and shape our eating behaviors and intake.
Collapse
|