1
|
Lin H, Han T, Wang J, Ma Z, Yu X. Screening and Identification of a Strain with Protease and Phytase Activities and Its Application in Soybean Meal Fermentation. Appl Biochem Biotechnol 2024; 196:790-803. [PMID: 37204550 DOI: 10.1007/s12010-023-04568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 05/20/2023]
Abstract
The aims of the study were to degrade the anti-nutritional factors (ANFs) such as phytic acid, glycinin, and β-conglycinin and improve the values of soybean meal (SBM). Firstly, in this study, a strain PY-4B which exhibited the best enzymatic activities of protease (403.3 ± 17.8 U/mL) and phytase (62.9 ± 2.9 U/mL) was isolated and screened among the isolates. Based on the analysis of physiological and biochemical characteristics and 16S rDNA sequence, the strain PY-4B was identified and named as Pseudomonas PY-4B. Next, Pseudomonas PY-4B was applied to fermentation of SBM. The results showed that the contents of glycinin and β-conglycinin were decreased by 57-63%, and the phytic acid was remarkably degraded by 62.5% due to the fermentation of SBM by Pseudomonas PY-4B. The degradation of glycinin and β-conglycinin resulted in increase of contents of water-soluble proteins and amino acids in fermented SBM. Moreover, Pseudomonas PY-4B exhibited no hemolytic activity and slight inhibitory effect on the growth of pathogen Staphylococcus aureus and the wide range of pH tolerance (3 to 9). In summary, our study indicates that isolated strain Pseudomonas PY-4B is a safe and applicable strain and has the ability to effectively degrade the ANFs (phytic acid, glycinin, and β-conglycinin) in SBM by fermentation.
Collapse
Affiliation(s)
- Hengyi Lin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, Zhejiang Province, 310018, People's Republic of China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, Zhejiang Province, China
| | - Jiteng Wang
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, Zhejiang Province, China
| | - Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, Zhejiang Province, 310018, People's Republic of China.
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, Zhejiang Province, 310018, People's Republic of China
| |
Collapse
|
2
|
|
3
|
Yavarzadeh M, Anwar F, Saadi S, Saari N. Production of glycerolamines based conjugated γ-aminobutyric acids using microbial COX and LOX as successor enzymes to GAD. Enzyme Microb Technol 2023; 169:110282. [PMID: 37393814 DOI: 10.1016/j.enzmictec.2023.110282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
Gamma-aminobutyric acid (γ-ABA) can be produced by various microorganisms including bacteria, fungi and yeasts using enzymatic bioconversion, microbial fermentation or chemical hydrolysis. Regenerating conjugated glycerol-amines is valid by the intervention of microbial cyclooxygenase [COX] and lipooxygenase [LOX] enzymes produced via lactobacillus bacteria (LAB) as successor enzymes to glutamate decarboxylases (GAD). Therefore, the aim of this review is to provide an overview on γ-ABA production, and microbiological achievements used in producing this signal molecule based on those fermenting enzymes. The formation of aminoglycerides based conjugated γ-ABA is considered the key substances in controlling the host defense against pathogens and is aimed in increasing the neurotransmission effects and in suppressing further cardiovascular diseases.
Collapse
Affiliation(s)
- Marjan Yavarzadeh
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan.
| | - Sami Saadi
- Institute de la Nutrition, de l'Alimentation et des Technologies Agroalimetaires INATAA, Université des Frères Mentouri Constantine, 1, Route de Ain El Bey, Constantine 25000, Algeria; Laboratoire de Génie Agro-Alimentaire (GeniAAl), INATAA, Université Frères Mentouri Constantine, 1 UFC1, Route de Ain El Bey, Constantine 25000, Algeria
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
4
|
Saadi S, Ariffin AA, Ghazali HM, Saari N, Mohammed AS, Anwar F, Hamid AA, Nacer NE. Structure–energy relationship of food materials using differential scanning calorimetry. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
- Sami Saadi
- Institute de la Nutrition, de l'Alimentation et des Technologies Agroalimetaires INATAA Université des Frères Mentouri Constantine 1 Route de Ain El Bey Constantine Algeria
- Laboratoire de Génie Agro‐Alimentaire (GeniAAl), INATAA Université Frères Mentouri Constantine 1 UFC1 Route de Ain El Bey Constantine Algeria
| | - Abdul Azis Ariffin
- Faculty of Food Science and Technology University Putra Malaysia 43400 Serdang Selangor Malaysia
| | - Hasanah Mohd Ghazali
- Faculty of Food Science and Technology University Putra Malaysia 43400 Serdang Selangor Malaysia
| | - Nazamid Saari
- Faculty of Food Science and Technology University Putra Malaysia 43400 Serdang Selangor Malaysia
| | | | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology Universiti Putra Malaysia 43400 Serdang Selangor Malaysia
- Institute of Chemistry University of Sargodha Sargodha 40100 Pakistan
| | - Azizah Abdul Hamid
- Faculty of Food Science and Technology University Putra Malaysia 43400 Serdang Selangor Malaysia
| | - Nor Elhouda Nacer
- Department of Biology of Organisms, Faculty of Natural and Life Sciences University of Batna 2 Batna 05000 Algeria
| |
Collapse
|
5
|
Kong X, Li Y, Liu X. A review of thermosensitive antinutritional factors in plant-based foods. J Food Biochem 2022; 46:e14199. [PMID: 35502149 DOI: 10.1111/jfbc.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/01/2022]
Abstract
Legumes and cereals account for the vast proportion of people's daily intake of plant-based foods. Meanwhile, a large number of antinutritional factors in legumes and cereals hinder the body absorption of nutrients and reduce the nutritional value of food. In this paper, the antinutritional effects, determination, and passivation methods of thermosensitive antinutritional factors such as trypsin inhibitors, urease, lipoxygenase, and lectin were reviewed to provide theoretical help to reduce antinutritional factors in food and improve the utilization rate of plant-based food nutrition. Since trypsin inhibitors and lectin have been more extensively studied and reviewed previously, the review mainly focused on urease and lipoxygenase. This review summarized the information of thermosensitive antinutritional factors, trypsin inhibitors, urease, lipoxygenase, and lectin, in cereals and legumes. The antinutritional effects, and physical and chemical properties of trypsin inhibitors, urease, lipoxygenase, and lectin were introduced. At the same time, the research methods for the detection and inactivation of these four antinutritional factors were also summarized in the order of research conducted time. The rapid determination and inactivation of antinutrients will be the focus of attention for the food industry in the future to improve the nutritional value of food. Exploring what structural changes could passivation technologies bring to antinutritional factors will provide a theoretical basis for further understanding the mechanisms of antinutritional factor inactivation. PRACTICAL APPLICATIONS: Antinutritional factors in plant-based foods hinder the absorption of nutrients and reduce the nutritional value of the food. Among them, thermosensitive antinutritional factors, such as trypsin inhibitors, urease, lipoxygenase, and lectins, have a high proportion among the antinutritional factors. In this paper, we investigate thermosensitive antinutritional factors from three perspectives: the antinutritional effect of thermosensitive antinutritional factors, determination, and passivation methods. The current passivation methods for thermosensitive antinutritional factors revolve around biological, physical, and chemical aspects, and their elimination mechanisms still need further research, especially at the protein structure level. Reducing the level of antinutritional factors in the future food industry while controlling the loss of other nutrients in food is a goal that needs to be balanced. This paper reviews the antinutritional effects of thermosensitive antinutritional factors and passivation methods, expecting to provide new research ideas to improve the nutrient utilization of food.
Collapse
Affiliation(s)
- Xin Kong
- College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - You Li
- College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Xinqi Liu
- College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
6
|
Tavano OL, Amistá MJDM, Del Ciello G, Rodrigues MCM, Bono Nishida AM, Valadares LA, Siqueira BM, Gomes RADS, Parolini MT, Silva Junior SID. Isolation and evaluation of quinoa (Chenopodium quinoa Willd.) protein fractions. A nutritional and bio-functional approach to the globulin fraction. Curr Res Food Sci 2022; 5:1028-1037. [PMID: 35769315 PMCID: PMC9234336 DOI: 10.1016/j.crfs.2022.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
This study evaluated the solubility profiles of quinoa grain proteins and applied a complete process for the isolation of its main protein fractions, namely: albumins, globulins, prolamins and glutelins, which corresponded to 26.96%, 41.3%, 1.7% and 23.16% of the total protein content, respectively. When these fractions were digested with pepsin followed by pancreatin, the degrees of hydrolysis achieved varied between 26.62% (for unheated globulin fraction) and 38.97% (for unheated glutelin), with casein reached 33.73% hydrolysis. After heating, the globulin hydrolysis degree increased to 34.7%, not significantly differing from casein. These results reflect its good susceptibility to hydrolysis by digestive enzymes, and this observation is reinforced with assays with pepsin, trypsin and chymotrypsin tested separately. Globulins, the largest protein fraction, showed promising results in additional assays regarding the amino acid profile, with limitation only for lysine in relation to the FAO standard, and the potential for releasing bioactive peptides after digestion. Although pepsin-digested globulin inhibited only 5% of ACE activity under the conditions tested, after 24h with the addition of pancreatin, the inhibition was 100%. Antioxidant activity (DPPH assay) also indicated very similar results, when hydrolysis with pepsin was inefficient in releasing antioxidant peptides, while hydrolysis by pancreatin led to 35 times greater results. About 96.5% of proteins from the quinoa grains can be easily solubilized. 41.3% of total quinoa protein corresponded to the globulins. Protein of quinoa flour was Lys rich, but the globulins were not. Quinoa globulin hydrolysates showed potential antioxidant activity. Quinoa globulin hydrolysates inhibit angiotensin converting enzyme in vitro.
Collapse
Affiliation(s)
- Olga Luisa Tavano
- ProThea – Research Group on Proteins for Health Promotion, Federal University of Alfenas, Minas, Gerais, Brazil
- Corresponding author. Faculty of Nutrition, Federal University of Alfenas, 700 Gabriel Monteiro da Silva St, Alfenas, MG, 37130-000, Brazil.
| | | | - Giani Del Ciello
- Nutrition Department, Triangulo Mineiro Federal University, Uberaba, Minas Gerais, Brazil
| | | | | | | | - Bruno Moreira Siqueira
- ProThea – Research Group on Proteins for Health Promotion, Federal University of Alfenas, Minas, Gerais, Brazil
- Graduate Program in Nutrition and Longevity - PPGNL, Federal University of Alfenas, Minas Gerais, Brazil
| | | | - Marco Túlio Parolini
- Biological and Natural Sciences Institute, Triangulo Mineiro Federal University, Uberaba, Brazil
| | | |
Collapse
|