1
|
Pennisi L, Ferri G, Lauteri C, Di Clerico D, Vergara A. Antibacterial Effects of Thermosonication Technology on Salmonella typhimurium Strains Identified from Swine Food Chain: An In Vitro Study. Foods 2024; 13:3259. [PMID: 39456321 PMCID: PMC11507906 DOI: 10.3390/foods13203259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Among innovative food technologies, ultrasounds have demonstrated physical damages (provided by frequency and intensity factors) on bacterial structures while determining the microbiological stabilization of many foodstuffs. This study tested the efficacy of the thermosonication process on 16 Salmonella typhimurium strains belonging to the academic biobank (isolated from swine slaughterhouses). All strains were exposed to focused ultrasounds, generated by the Waveco® system (Milan, Italy), with the following settings: 40 KHz coupled with 80 W at different 5 min intervals starting from 5 to 15 ones, and focusing on two different temperatures: 40 °C and 50 °C. After each treatment, all strains were directly plated onto count agars immediately (t0) and after 24 h (t24) of storage at refrigerated temperature. The results showed bacterial reductions by prolonging the sonication treatments until 15 min (i.e., 50 °C for 15 min reduced of 2.16 log CFU/gr the initial loads). In the present in vitro study, the most considerable decrease was observed after 24 h. It meant that Salmonella strains were lethally damaged at the wall level, confirming the ultrasound bactericidal effect on loads. The present in vitro scientific investigation demonstrates the practical bactericidal effects of thermosonication, highlighting promising applications at the industry level for food microbial stabilization and shelf-life prolongation.
Collapse
Affiliation(s)
- Luca Pennisi
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection “G. Tiecco”, University of Teramo, Strada Provinciale 18, 64100 Teramo, Italy; (L.P.); (C.L.); (A.V.)
| | - Gianluigi Ferri
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection “G. Tiecco”, University of Teramo, Strada Provinciale 18, 64100 Teramo, Italy; (L.P.); (C.L.); (A.V.)
| | - Carlotta Lauteri
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection “G. Tiecco”, University of Teramo, Strada Provinciale 18, 64100 Teramo, Italy; (L.P.); (C.L.); (A.V.)
| | | | - Alberto Vergara
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection “G. Tiecco”, University of Teramo, Strada Provinciale 18, 64100 Teramo, Italy; (L.P.); (C.L.); (A.V.)
| |
Collapse
|
2
|
Lauteri C, Pennisi L, Di Clerico D, Pennisi V, Vergara A. Low-frequency focused thermosonication for Salmonella typhimurium inactivation: an in vitro study. Ital J Food Saf 2024; 13:12217. [PMID: 39233703 PMCID: PMC11369753 DOI: 10.4081/ijfs.2024.12217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/18/2024] [Indexed: 09/06/2024] Open
Abstract
Customer requests are addressed to safe products that best express their characteristics of "naturalness" and "freshness" for their entire shelf life; therefore, scientific research has been exploring the use of "non-thermal technologies". Thermosonication using low-frequency focused ultrasound determines bacterial inactivation through the phenomenon of "cavitation", guaranteeing high-quality standards of safety, nutrition, and freshness of the products. The present work aims to evaluate the effectiveness of the inactivation of Salmonella typhimurium in culture broth by low-frequency focused thermosonication with two different operational parameters: sublethal temperature (40°C, 50°C) and treatment time (5, 10, and 15 minutes). Treatment determined a bacterial load reduction compared to the negative control (untreated inoculum), which was statistically significant at the t-test (p<0.05). Average decreases of 1.5 log and 3.5 CFU/mL were observed, respectively, after treatment and after 24 hours of storage at +4°C. Treatment at 50°C for 15 minutes was the most effective (average value: 3.06 log CFU/mL; minimum value: 2.13 log CFU/mL; maximum value: 4.59 log CFU/mL). However, strains have shown markable variability: one of them even showed an increase in the microbial load 24 hours after treatment at 40°C for 5 minutes (-0.20 log CFU/mL); however, the same treatment showed a reduction of bacterial charge in all the other strains (average value: 1.05 log CFU/mL; minimum value: -0.20 log CFU/mL; maximum value: 2.28 log CFU/mL). This study poses numerous perspectives on the use of low-frequency focused thermosonication treatment in the food industry as a sustainable and safe alternative to classic thermal treatments.
Collapse
Affiliation(s)
- Carlotta Lauteri
- Department of Veterinary Medicine, School of Specialization in Inspection of Food of Animal Origin “G. Tiecco”, University of Teramo, Località Piano D’Accio;
| | - Luca Pennisi
- Department of Veterinary Medicine, School of Specialization in Inspection of Food of Animal Origin “G. Tiecco”, University of Teramo, Località Piano D’Accio;
| | | | - Viola Pennisi
- Department of Veterinary Medicine, School of Specialization in Inspection of Food of Animal Origin “G. Tiecco”, University of Teramo, Località Piano D’Accio;
| | - Alberto Vergara
- Department of Veterinary Medicine, School of Specialization in Inspection of Food of Animal Origin “G. Tiecco”, University of Teramo, Località Piano D’Accio;
| |
Collapse
|
3
|
Luo W, Tang J, Wang B, Wu D, Wang J, Cheng L, Geng F. The potential mechanism of low-power water bath ultrasound to enhance the effectiveness of low-concentration chlorine dioxide in inhibiting Salmonella Typhimurium. Food Chem X 2023; 20:100901. [PMID: 38144795 PMCID: PMC10740011 DOI: 10.1016/j.fochx.2023.100901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/24/2023] [Accepted: 09/23/2023] [Indexed: 12/26/2023] Open
Abstract
This chapter presents a systematic study of the inhibition effect of chlorine dioxide treatment alone and in combination with ultrasound treatment of Salmonella and the physiological metabolic processes within the treated cells. The low-power ultrasound (0.03 W/mL) significantly enhanced the effectiveness (110.00 %) of low concentrations of chlorine dioxide (0.25 mg/L) in inhibiting Salmonella, which, in turn, would significantly reduce the potential environmental impact. In addition, further studies found that low-power ultrasound may enhance the structural and functional damage of chlorine dioxide on Salmonella cell membranes (significant increase in permeability of the outer and inner cell membranes) and disrupt intracellular substance metabolism (small molecule and nucleotide metabolism) and energy metabolism (significant reduction in ATP content and ATPase activity) balance to improve the bacterial inhibitory effect of chlorine dioxide. The results of the study will provide a theoretical basis and methodological guidance for the implementation of "cleaner production" in the food industry.
Collapse
Affiliation(s)
- Wei Luo
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Jie Tang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Beibei Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Di Wu
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Jinqiu Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Lei Cheng
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| |
Collapse
|
4
|
Luo W, Xu Y, Gu X, Zhang J, Wang J, Geng F. Divergence of Liver Lipidomes in Tibetan and Yorkshire Pigs Living at Different Altitudes. Molecules 2023; 28:molecules28072991. [PMID: 37049754 PMCID: PMC10095695 DOI: 10.3390/molecules28072991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
The Tibetan pig is a characteristic breed of the Qinghai-Tibet Plateau with distinct physiological and meat quality attributes. The liver lipid profile can offer an important perspective to explore the uniqueness of Tibetan pigs. A quantitative comparison of liver lipidomes revealed significant differences in the lipid profiles between Tibetan and Yorkshire pigs raised at different altitudes. The abundance of lipids in the livers of pigs raised at a high altitude was higher than that of pigs raised at a lower altitude, whereas the abundance of lipids in the livers of Yorkshire pigs was higher than that of Tibetan pigs raised at the same altitude. Of the 1101 lipids identified, 323 and 193 differentially abundant lipids (DALs) were identified in the pairwise comparisons of Tibetan and Yorkshire pigs raised at different altitudes, respectively. The DALs of Tibetan pigs consisted mainly of 161 triglycerides, along with several acylcarnitines, represented by carnitine C2:0, and significant changes in the abundance of some phospholipids. The DALs of Yorkshire pigs were more complex, with significant increases in the abundance of triglycerides, cholesteryl esters, and free fatty acids, and decreases in the abundance of some phospholipids. This research provides strong theoretical and data support for the high-quality development of the highland livestock industry.
Collapse
Affiliation(s)
- Wei Luo
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yisha Xu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xuedong Gu
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jinqiu Wang
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Correspondence:
| |
Collapse
|
5
|
Liu Y, Yan Y, Yang K, Yang X, Dong P, Wu H, Luo X, Zhang Y, Zhu L. Inhibitory mechanism of Salmonella Derby biofilm formation by sub-inhibitory concentrations of clove and oregano essential oil: A global transcriptomic study. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|