1
|
Elkhatib O, Tetteh J, Ali R, Mohamed AIA, Bai S, Kubelka J, Piri M, Goual L. Wettability of rock minerals and the underlying surface forces: A review of the implications for oil recovery and geological storage of CO 2. Adv Colloid Interface Sci 2024; 333:103283. [PMID: 39305582 DOI: 10.1016/j.cis.2024.103283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 11/01/2024]
Abstract
The wettability of subsurface minerals is a critical factor influencing the pore-scale displacement of fluids in underground reservoirs. As such, it plays a key role in hydrocarbon production and greenhouse gas geo-sequestration. We present a comprehensive and critical review of the current state of knowledge on the intermolecular forces governing wettability of rock minerals most relevant to subsurface fluid storage and recovery. In this review we first provide a detailed summary of the available data, both experimental and theoretical, from the perspective of the fundamental intermolecular and surface forces, specifically considering the roles played by the surface chemistry, fluid properties, as well as other significant factors. We subsequently offer an analysis of the effects of chemical additives such as surfactants and nanoparticles that have emerged as viable means for manipulating wettability. In each example, we highlight the practical implications for hydrocarbon production and CO2 geo-storage as two of the most important current applications. As the physico-chemical mechanisms governing the wetting phenomena are the main focus, special emphasis is placed on nano-scale experimental approaches along with atomic-scale modeling that specifically probe the underlying intermolecular and surface forces. Lastly, we discuss the gaps in the current state of knowledge and outline future research directions to further our fundamental understanding of the interactions and their impact on the wetting characteristics of Earth's minerals.
Collapse
Affiliation(s)
- Omar Elkhatib
- Center of Innovation for flow through Porous Media, Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - Julius Tetteh
- Center of Innovation for flow through Porous Media, Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - Ramzi Ali
- Center of Innovation for flow through Porous Media, Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - Abdelhalim I A Mohamed
- Center of Innovation for flow through Porous Media, Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - Shixun Bai
- China University of Petroleum (Beijing) at Karamay, Xinjiang, China
| | - Jan Kubelka
- Center of Innovation for flow through Porous Media, Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA.
| | - Mohammad Piri
- Center of Innovation for flow through Porous Media, Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - Lamia Goual
- Center of Innovation for flow through Porous Media, Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
2
|
Muhammad AH, Asma M, Hamed YS, Hameed A, Abdullah, Jian W, Peilong S, Kai Y, Ming C. Enhancing cellulose-stabilized multiphase/Pickering emulsions systems: A molecular dynamics perspective. Int J Biol Macromol 2024; 277:134244. [PMID: 39084436 DOI: 10.1016/j.ijbiomac.2024.134244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Cellulose stabilized multiphase systems (CSMS) have garnered significant attention due to their ultra-stabilization mechanism and vast potential across different fields. CSMS have found valuable applications in scientific disciplines, including Food Science, Pharmaceutical Science, Material Science, and related fields, owing to their beneficial attributes such as sustainability, safety, renewability, and non-toxicity. Furthermore, MPS exhibit novel characteristics that enable multiple mechanisms to produce HIPEs, aerogels, and oleogels revealing undiscovered information. Therefore, to explore the undiscovered phenomena of MPS, molecular level insights using advanced simulation/computational approaches are essential. The molecular dynamics simulation (MDS), play a valuable role in analyzing the interactions of ternary interphase. The MDS have successfully quantified the interactions of MPS by generating, visualizing, and analyzing trajectories. Through MDS, researchers have explored CSMS at the molecular level and advanced their applications in 3D printing, packaging, preparation, drug delivery, encapsulation, biosensors, electronic devices, biomaterials, and energy conservation. This review highlights the remarkable advancements in CSMS over the past five years, along with contributions of MDS in evaluating the relationships that dictate the functionality and properties of CSMS. By integrating experimental and computational methods, we underscore the potential to innovate and optimize these multiphase systems for groundbreaking applications.
Collapse
Affiliation(s)
- Ahsan Hafiz Muhammad
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, Zhejiang 310014, People's Republic of China.
| | - Mumtaz Asma
- College of Resources and Environment, South China University of Technology, Guangzhou 510640, China
| | - Yahya S Hamed
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, Zhejiang 310014, People's Republic of China; Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Aneela Hameed
- Department of Animal Food Products Technology, Faculty of Food Science & Nutrition, Bahauddin Zakariya University, Multan 60600, Pakistan
| | - Abdullah
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, Zhejiang 310014, People's Republic of China
| | - Wang Jian
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, Zhejiang 310014, People's Republic of China
| | - Sun Peilong
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, Zhejiang 310014, People's Republic of China
| | - Yang Kai
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, Zhejiang 310014, People's Republic of China.
| | - Cai Ming
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, Zhejiang 310014, People's Republic of China.
| |
Collapse
|
3
|
Wei X, Xie H, Hu Z, Zeng X, Dong H, Liu X, Bai W. Multiscale structure changes and mechanism of polyphenol-amylose complexes modulated by polyphenolic structures. Int J Biol Macromol 2024; 262:130086. [PMID: 38360224 DOI: 10.1016/j.ijbiomac.2024.130086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
This study was designed to investigate the effect of polyphenolic structure on the interaction strength and process between polyphenols (gallic acid (GA), epigallocatechin gallate (EGCG) and tannic acid (TA)) and amylose (AM). The results of Fourier transform infrared spectroscopy, isothermal titration calorimetry, X-ray photoelectron spectroscopy and molecular dynamic simulation (MD) suggested that the interactions between the three polyphenols and AM were noncovalent, spontaneous, low-energy and driven by enthalpy, which would be enhanced with increasing amounts of pyrogallol groups in the polyphenols. The results of turbidity, particle size and appearance of the complex solution showed that the interaction process between polyphenols and AM could be divided into three steps and would be advanced by increasing the number of pyrogallol groups in the polyphenols. At the same time, MD was intuitively employed to exhibit the interaction process between amylose and polyphenols, and it revealed that the interaction induced the aggregation of amylose and that the agglomeration degree of amylose increased with increasing number of pyrogallol groups at polyphenols. Last, the SEM and TGA results showed that TA/AM complexes had the tightest structure and the highest thermal stability (TA/AM˃EGCG/AM˃GA/AM), which could be attributed to TA having five pyrogallol groups.
Collapse
Affiliation(s)
- Xianling Wei
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Huan Xie
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; School of Food and Pharmacy, Shanghai Zhongqiao Vocational and Technology University, Shanghai 201514, China
| | - Ziqing Hu
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Hao Dong
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Xiaoyan Liu
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China.
| | - Weidong Bai
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China.
| |
Collapse
|
4
|
Borówko M. Special Issue "Third Edition: Advances in Molecular Simulation". Int J Mol Sci 2024; 25:2709. [PMID: 38473956 DOI: 10.3390/ijms25052709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Molecular simulation is one of the fastest growing fields in science [...].
Collapse
Affiliation(s)
- Małgorzata Borówko
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
| |
Collapse
|
5
|
Zhu C, Wei F, Jiang H, Lin Z, Zhong L, Wu Y, Sun X, Song L. Exploration of the structural mechanism of hydrogen (H 2)-promoted horseradish peroxidase (HRP) activity via multiple spectroscopic and molecular dynamics simulation techniques. Int J Biol Macromol 2024; 258:128901. [PMID: 38128803 DOI: 10.1016/j.ijbiomac.2023.128901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Horseradish peroxidase (HRP) is an enzyme that is widely used in various fields. In this study, the effects of molecular hydrogen (H2) on the activity and structural characteristics of HRP were investigated by employing multiple spectroscopic techniques, atomic force microscopy (AFM) and molecular dynamics (MD) simulations. The results demonstrated that H2 could enhance HRP activity, especially in 1.5 mg/L hydrogen-rich water (HRW). The structural analysis results showed that H2 might alter HRP activity by affecting the active sites, secondary structure, hydrogen bonding network, CS groups, and morphological characteristics. The MD results also confirmed that H2 could increase the FeN bond distance in the active site, affect the secondary structure, and increase the number of hydrogen bonds. The MD results further suggested that H2 could increase the number of salt bridges, and lengthen the SS bonds in HRP. This study primarily revealed the mechanism by which H2 enhances the HRP activity, providing insight into the interactions between gas and macromolecular proteins. However, some of the results obtained via MD simulations still need to be verified experimentally. In addition, our study also provided a new convenient strategy to enhance enzyme activity.
Collapse
Affiliation(s)
- Chuang Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fenfen Wei
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huibin Jiang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zihan Lin
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingyue Zhong
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Wu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangjun Sun
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lihua Song
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Perugino F, Pedroni L, Galaverna G, Dall'Asta C, Dellafiora L. A mechanistic toxicology study to grasp the mechanics of zearalenone estrogenicity: Spotlighting aromatase and the effects of its genetic variability. Toxicology 2024; 501:153686. [PMID: 38036094 DOI: 10.1016/j.tox.2023.153686] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
Zearalenone (ZEN) is a mycoestrogen produced by Fusarium fungi contaminating cereals and in grain-based products threatening human and animal health due to its endocrine disrupting effects. Germane to the mechanisms of action, ZEN may activate the estrogen receptors and inhibit the estrogens-producing enzyme aromatase (CYP19A1). Both show single nucleotide variants (SNVs) among humans associated with a diverse susceptibility of being activated or inhibited. These variations might modify the endocrine disrupting action of ZEN, requiring dedicated studies to improve its toxicological understanding. This work focused on human aromatase investigating via 3D molecular modelling whether some of the SNVs reported so far (n = 434) may affect the inhibitory potential of ZEN. It has been also calculated the inhibition capability of α-zearalenol, the most prominent and estrogenically potent phase I metabolite of ZEN, toward those aromatase variants with an expected diverse sensitivity of being inhibited by ZEN. The study: i) described SNVs likely associated with a different susceptibility to ZEN and α-zearalenol inhibition - like T310S that is likely more susceptible to inhibition, or D309G and S478F that are possibly inactive variants; ii) proofed the possible existence of inter-individual susceptibility to ZEN; iii) prioritized aromatase variants for future investigations toward a better comprehension of ZEN xenoestrogenicity at an individual level.
Collapse
Affiliation(s)
- Florinda Perugino
- Department of Food and Drug, University of Parma, Parma, Italy; Department of Biology, University of Naples Federico II, Naples, Italy
| | - Lorenzo Pedroni
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | - Luca Dellafiora
- Department of Food and Drug, University of Parma, Parma, Italy.
| |
Collapse
|
7
|
Bai G, Pan Y, Zhang Y, Li Y, Wang J, Wang Y, Teng W, Jin G, Geng F, Cao J. Research advances of molecular docking and molecular dynamic simulation in recognizing interaction between muscle proteins and exogenous additives. Food Chem 2023; 429:136836. [PMID: 37453331 DOI: 10.1016/j.foodchem.2023.136836] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/21/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
During storage and processing, muscle proteins, e.g. myosin and myoglobin, will inevitably undergo degeneration, which is thus accompanied by quality deterioration of muscle foods. Some exogenous additives have been widely used to interact with muscle proteins to stabilize the quality of muscle foods. Molecular docking and molecular dynamics simulation (MDS) are regarded as promising tools for recognizing dynamic molecular information at atomic level. Molecular docking and MDS can explore chemical bonds, specific binding sites, spatial structure changes, and binding energy between additives and muscle proteins. Development and workflow of molecular docking and MDS are systematically summarized in this review. Roles of molecular simulations are, for the first time, comprehensively discussed in recognizing the interaction details between muscle proteins and exogenous additives aimed for stabilizing color, texture, flavor, and other properties of muscle foods. Finally, research directions of molecular docking and MDS for improving the qualities of muscle foods are discussed.
Collapse
Affiliation(s)
- Genpeng Bai
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Yiling Pan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Yuemei Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China.
| | - Yang Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Jinpeng Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Ying Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Wendi Teng
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Guofeng Jin
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, 610106 Chengdu, China
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China.
| |
Collapse
|
8
|
Recent progress of membrane technology for chiral separation: A comprehensive review. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|