1
|
Wu X, Zhang J, Wang M, Sun Z, Chang C, Ying Y, Li D, Zheng H. Effect of emulsifier type on camellia oil-based nanostructured lipid carriers for delivery of curcumin. Food Chem 2025; 482:144193. [PMID: 40209370 DOI: 10.1016/j.foodchem.2025.144193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
In this study, a camellia oil-based nanostructured lipid carrier (NLC) was developed for the delivery of curcumin (Cur). To identify suitable natural emulsifiers, the effects of three different types, including tea saponin (TS), sodium caseinate (SC), and soy lecithin (SL), on the structure, stability, and digestibility of Cur-NLCs were investigated, with Tween 80 (T80) serving as a positive control. The results showed that the absolute zeta potential of NLCs prepared with natural emulsifiers exceeded 30 mV, and their encapsulation efficiency was above 85 %. Among them, TS-Cur-NLC demonstrated good uniformity and stability after 30 days of storage at 25 °C. Meanwhile, the bioavailability of SC-Cur-NLC reached 67.48 %, showing no significant difference from that of T80-Cur-NLC (p > 0.05). This study broadens the application scope of camellia oil and provides a theoretical foundation for utilizing natural emulsifiers in the development of delivery systems for fat-soluble active substances.
Collapse
Affiliation(s)
- Xinghui Wu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaxin Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mengqi Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhouliang Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chengfu Chang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - YunXin Ying
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Dan Li
- Heilongjiang Green Food Science Research Institute, Harbin, Heilongjiang 150028, China.
| | - Huanyu Zheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science Research Institute, Harbin, Heilongjiang 150028, China.
| |
Collapse
|
2
|
Herdiana Y. Nanoparticles of natural product-derived medicines: Beyond the pandemic. Heliyon 2025; 11:e42739. [PMID: 40083991 PMCID: PMC11904502 DOI: 10.1016/j.heliyon.2025.e42739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 03/16/2025] Open
Abstract
This review explores the synergistic potential of natural products and nanotechnology for viral infections, highlighting key antiviral, immunomodulatory, and antioxidant properties to combat pandemics caused by highly infectious viruses. These pandemics often result in severe public health crises, particularly affecting vulnerable populations due to respiratory complications and increased mortality rates. A cytokine storm is initiated when an overload of pro-inflammatory cytokines and chemokines is released, leading to a systemic inflammatory response. Viral mutations and the limited availability of effective drugs, vaccines, and therapies contribute to the continuous transmission of the virus. The coronavirus disease-19 (COVID-19) pandemic has sparked renewed interest in natural product-derived antivirals. The efficacy of traditional medicines against pandemic viral infections is examined. Their antiviral, immunomodulatory, anti-inflammatory, and antioxidant properties are highlighted. This review discusses how nanotechnology enhances the efficacy of herbal medicines in combating viral infections.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
3
|
Ferreira S, Grenho L, Fernandes MH, Lima SAC. Curcumin-Loaded Lipid Nanoparticles: A Promising Antimicrobial Strategy Against Enterococcus faecalis in Endodontic Infections. Pharmaceutics 2025; 17:108. [PMID: 39861755 PMCID: PMC11768553 DOI: 10.3390/pharmaceutics17010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: This study aims to evaluate the efficacy of curcumin (CUR), a natural polyphenol with potent antimicrobial and anti-inflammatory properties, when formulated as solid lipid nanoparticles (CUR-loaded SLN) against Enterococcus faecalis. Methods: Solid lipid nanoparticles (SLNs) were prepared as a carrier for CUR, which significantly improved its solubility. SLNs made with cetyl palmitate and Tween 80 were obtained via the hot ultrasonication method. The physicochemical properties of CUR-loaded SLNs were evaluated, including their size, stability, and release profile. Antimicrobial testing was conducted against both sessile and planktonic E. faecalis populations. Cytotoxicity was assessed on human gingival fibroblasts. Results: The CUR-loaded SLNs exhibited about 200 nm and a -25 mV surface potential, and the encapsulation of CUR did not affect the physicochemical properties of SLNs. CURs were released from SLNs in a controlled and sustained manner over 100 h. The nanoparticles remained stable for at least two months when stored at 4 °C or 25 °C, making them suitable for clinical use. Antioxidant activity was confirmed through DPPH and ABTS assays. Free CUR significantly reduced the planktonic E. faecalis CFU counts by approximately 65% after 24 h of exposure. However, this inhibitory effect diminished with longer exposure times (48 and 72 h). Antimicrobial activity studies of CUR-loaded SLNs showed dose- and time-dependent effects, in the 2.5-10 µg/mL range, against both sessile and planktonic E. faecalis populations, over 24 to 72 h. The CUR-loaded SLNs showed good cytocompatibility with human fibroblasts up to 2.5 μg/mL, suggesting low toxicity. Conclusions: CUR-loaded SLNs demonstrate significant antimicrobial activity against E. faecalis, along with good cytocompatibility, indicating their potential as an effective adjunct therapy in endodontic treatments.
Collapse
Affiliation(s)
- Sónia Ferreira
- University Institute of Health Sciences (IUCS), Cooperative CESPU, CRL, 4585-116 Gandra, Portugal;
| | - Liliana Grenho
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal (M.H.F.)
- Laboratório Associado para a Química Verde-Rede de Química e Tecnologia (LAQV, REQUIMTE), Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal
| | - Maria Helena Fernandes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal (M.H.F.)
- Laboratório Associado para a Química Verde-Rede de Química e Tecnologia (LAQV, REQUIMTE), Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal
| | - Sofia A. Costa Lima
- Laboratório Associado para a Química Verde-Rede de Química e Tecnologia (LAQV, REQUIMTE), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Liu Y, Dong F, Zhou L, Zhao Q, Zhang S. Development of soybean protein-based bioactive substances delivery systems: A systematic overview based on recent researches. Int J Biol Macromol 2025; 285:137998. [PMID: 39626811 DOI: 10.1016/j.ijbiomac.2024.137998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/06/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024]
Abstract
Some bioactive substances in food have problems such as poor solubility, unstable chemical properties and low bioavailability, which limit their application in functional foods. In recent years, in order to improve the above problems of bioactive substances, soybean protein-based drug delivery systems have been developed. This article reviewed the structure and properties of several major soybean protein commonly used to construct bioactive substance delivery systems. Several common carrier types based on soybean protein were then introduced. The biological functions and limitations of several common soybean protein delivery bioactive substances and the role of soybean protein-based delivery systems were discussed. At present, soybean protein is the most widely used in drug delivery systems. Soybean protein-based nano-particles are currently the most commonly used delivery carriers. Soybean protein-based hydrogels, emulsions, microcapsules and electrospinning are also widely used. Polyphenols, carotenoids, vitamins, functional oils and probiotics are bioactive substances that are frequently delivered. However, in order to promote the application of soybean protein-based delivery systems in food, soybean protein peptidyl delivery vectors and collaborative delivery are the future development trends. In addition, a number of challenges must be addressed, including the sensitization of soybean protein, intolerance to environmental conditions, and the limitations of processing technologies.
Collapse
Affiliation(s)
- Yuexin Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fengjuan Dong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Linyi Zhou
- School of food and health, Beijing Technology and Business University, Beijing 100048, China
| | - Qingkui Zhao
- Research and Product Development Center, Shandong Guohong Biotechnology Company Limited, Liaocheng, Shandong 252899, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research and Product Development Center, Shandong Guohong Biotechnology Company Limited, Liaocheng, Shandong 252899, China.
| |
Collapse
|
5
|
Dong W, Li H, Li Y, Wang Y, Dai L, Wang S. Characterization of active peptides derived from three leeches and comparison of their anti-thrombotic mechanisms using the tail vein thrombosis model in mice and metabonomics. Front Pharmacol 2024; 14:1324418. [PMID: 38333223 PMCID: PMC10851270 DOI: 10.3389/fphar.2023.1324418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/26/2023] [Indexed: 02/10/2024] Open
Abstract
Background and aims: The increasing incidence of cardiovascular diseases has created an urgent need for safe and effective anti-thrombotic agents. Leech, as a traditional Chinese medicine, has the effect of promoting blood circulation and removing blood stasis, but its real material basis and mechanism of action for the treatment of diseases such as blood stasis and thrombosis have not been reported. Methods: In this study, Whitmania Pigra Whitman (WPW), Hirudo nipponica Whitman (HNW) and Whitmania acranutata Whitman (WAW) were hydrolyzed by biomimetic enzymatic hydrolysis to obtain the active peptides of WPW (APP), the active peptides of HNW (APH) and the active peptides of WAW (APA), respectively. Then their structures were characterized by sykam amino acid analyzer, fourier transform infrared spectrometer (FT-IR), circular dichroism (CD) spectrometer and LC-MS. Next, the anti-thrombotic activities of APP, APH and APA were determined by carrageenan-induced tail vein thrombosis model in mice, and the anti-thrombotic mechanisms of high-dose APP group (HAPP), high-dose APH group (HAPH) and high-dose APA group (HAPA) were explored based on UHPLC-Q-Exactive Orbitrap mass spectrometry. Results: The results showed that the amino acid composition of APP, APH and APA was consistent, and the proportion of each amino acid was few different. The results of FT-IR and CD showed that there were no significant differences in the proportion of secondary structures (such as β-sheet and random coil) and infrared absorption peaks between APP, APH and APA. Mass spectrometry data showed that there were 43 common peptides in APP, APH and APA, indicating that the three have common material basis. APP, APH and APA could significantly inhibit platelet aggregation, reduce black-tail length, whole blood viscosity (WBV), plasma viscosity (PV), and Fibrinogen (FIB), and prolong coagulation time, including activated partial thrombin time (APTT), prothrombin time (PT) and thrombin time (TT). In addition, 24 metabolites were identified as potential biomarkers associated with thrombosis development. Among these, 19, 23, and 20 metabolites were significantly normalized after administration of HAPP, HAPH, and HAPA in the mice, respectively. Furthermore, the intervention mechanism of HAPP, HAPH and HAPA on tail vein thrombosis mainly involved in linoleic acid metabolism, primary bile acid biosynthesis and ether lipid metabolism. Conclusion: Our findings suggest that APP, APH and APA can exert their anti-blood stasis and anti-thrombotic activities by interfering with disordered metabolic pathways in vivo, and there is no significant difference in their efficacies.
Collapse
Affiliation(s)
- Weichao Dong
- School of Pharmacy, Binzhou Medical University, Yantai, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huajian Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
- School of Pharmacy, ZheJiang Chinese Medicial University, Hangzhou, China
| | - Yanan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuqing Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Long Dai
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Shaoping Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|