1
|
Patel NF, Letinić BD, Lobb L, Zawada J, Dlamini DM, Mabaso N, Munhenga G, Oliver SV. Comparison of the effect of bacterial stimulation on the global epigenetic landscape and transcription of immune genes in primarily zoophilic members of the Anopheles gambiae complex (Diptera: Culicidae). Mol Biochem Parasitol 2024; 260:111631. [PMID: 38844266 DOI: 10.1016/j.molbiopara.2024.111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
Members of the Anopheles gambiae complex vary in their vector competence, and this is often attributed to behavioural differences. Similarly, there are differences in transmission capabilities of the zoophilic members of this complex despite exhibiting similar behaviours. Therefore, behavioural differences alone cannot fully explain vector competence variation within members of the An. gambiae complex. The immune system of mosquitoes plays a key role in determining susceptibility to parasite infection and consequently transmission capacity. This study aimed to examine variations in the immune response of An. arabiensis, An. merus and An. quadriannulatus, a major, minor, and non-vector respectively. The global epigenetic landscape was characterised and the expression of Defensin-1 and Gambicin was assessed in response to Gram-positive (Streptococcus pyogenes) and Gram-negative (Escherichia coli) bacterial infections. The effect of insecticide resistance in An. arabiensis on these aspects was also assessed. The immune system was stimulated by a blood-borne bacterial supplementation. The 5mC, 5hmC, m6A methylation levels and Histone Acetyl Transferase activity were assessed with commercial ELISA kits. The transcript levels of Defensin-1 and Gambicin were assessed by quantitative Real-Time Polymerase Chain Reaction. Species-specific differences in 5mC and m6A methylation existed both constitutively as well as post immune stimulation. The epigenetic patterns observed in the laboratory strains were largely conserved in F1 offspring of wild-caught adults. The methylation patterns in the major vector typically differed from that of the minor/non-vectors. The differences between insecticide susceptible and resistant An. arabiensis were more reflected in the expression of Defensin-1 and Gambicin. The expression of these peptides differed in the strains only after bacterial stimulation. Anopheles merus and An. quadriannulatus expressed significantly higher levels of antimicrobial peptides, both constitutively and after immune stimulation. These findings suggest molecular variations in the immune response of members of the An. gambiae complex.
Collapse
Affiliation(s)
- Nashrin F Patel
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Blaženka D Letinić
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Leanne Lobb
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Clinical HIV Research Unit, Wits Health Consortium, Johannesburg, South Africa
| | - Jacek Zawada
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; South African National Biodiversity Institute (SANBI) National Zoological Gardens, Pretoria, South Africa
| | - Dumsani M Dlamini
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nondumiso Mabaso
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Givemore Munhenga
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shüné V Oliver
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
2
|
Saha B, McNinch CM, Lu S, Ho MCW, De Carvalho SS, Barillas-Mury C. In-depth transcriptomic analysis of Anopheles gambiae hemocytes uncovers novel genes and the oenocytoid developmental lineage. BMC Genomics 2024; 25:80. [PMID: 38243165 PMCID: PMC10799387 DOI: 10.1186/s12864-024-09986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/07/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Hemocytes are immune cells that patrol the mosquito hemocoel and mediate critical cellular defense responses against pathogens. However, despite their importance, a comprehensive transcriptome of these cells was lacking because they constitute a very small fraction of the total cells in the insect, limiting the study of hemocyte differentiation and immune function. RESULTS In this study, an in-depth hemocyte transcriptome was built by extensive bulk RNA sequencing and assembly of hemocyte RNAs from adult A. gambiae female mosquitoes, based on approximately 2.4 billion short Illumina and about 9.4 million long PacBio high-quality reads that mapped to the A. gambiae PEST genome (P4.14 version). A total of 34,939 transcripts were annotated including 4,020 transcripts from novel genes and 20,008 novel isoforms that result from extensive differential splicing of transcripts from previously annotated genes. Most hemocyte transcripts identified (89.8%) are protein-coding while 10.2% are non-coding RNAs. The number of transcripts identified in the novel hemocyte transcriptome is twice the number in the current annotation of the A. gambiae genome (P4.14 version). Furthermore, we were able to refine the analysis of a previously published single-cell transcriptome (scRNAseq) data set by using the novel hemocyte transcriptome as a reference to re-define the hemocyte clusters and determine the path of hemocyte differentiation. Unsupervised pseudo-temporal ordering using the Tools for Single Cell Analysis software uncovered a novel putative prohemocyte precursor cell type that gives rise to prohemocytes. Pseudo-temporal ordering with the Monocle 3 software, which analyses changes in gene expression during dynamic biological processes, determined that oenocytoids derive from prohemocytes, a cell population that also gives rise to the granulocyte lineage. CONCLUSION A high number of mRNA splice variants are expressed in hemocytes, and they may account for the plasticity required to mount efficient responses to many different pathogens. This study highlights the importance of a comprehensive set of reference transcripts to perform robust single-cell transcriptomic data analysis of cells present in low abundance. The detailed annotation of the hemocyte transcriptome will uncover new facets of hemocyte development and function in adult dipterans and is a valuable community resource for future studies on mosquito cellular immunity.
Collapse
Affiliation(s)
- Banhisikha Saha
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| | - Colton M McNinch
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, 20892, Bethesda, MD, USA
| | - Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Margaret C W Ho
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, 20892, Bethesda, MD, USA
| | - Stephanie Serafim De Carvalho
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA.
| |
Collapse
|
3
|
Ferraboli JW, Soares da Veiga GT, Albrecht L. Plasmodium vivax transcriptomics: What is new? Exp Biol Med (Maywood) 2023; 248:1645-1656. [PMID: 37786955 PMCID: PMC10723030 DOI: 10.1177/15353702231198070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Malaria is the leading human parasitosis and is transmitted through the bite of anopheline mosquitoes infected with parasites of the genus Plasmodium spp. Among the seven species that cause malaria in humans, Plasmodium vivax is the most prevalent species in Latin America. In recent years, there have been an increasing number of reports of clinical complications caused by P. vivax infections, which were previously neglected and underestimated. P. vivax biology remains with large gaps. The emergence of next-generation sequencing technology has ensured a breakthrough in species knowledge. Coupled with this, the deposition of the P. vivax Sal-1 reference genome allowed an increase in transcriptomics projects by accessing messenger RNA. Thus, the regulation of differential gene expression according to the parasite life stage was verified, and several expressed genes were linked to different biological functions. Today, with the progress associated with RNA sequencing technologies, it is possible to detect nuances and obtain robust results. Discoveries provided by transcriptomic studies allow us to understand topics such as RNA expression and regulation and proteins and metabolic pathways involved during different stages of the parasite life cycle. The information obtained enables a better comprehension of immune system evasion mechanisms; invasion and adhesion strategies used by the parasite; as well as new vaccine targets, potential molecular markers, and others therapeutic targets. In this review, we provide new insights into P. vivax biology by summarizing recent findings in transcriptomic studies.
Collapse
Affiliation(s)
- Julia Weber Ferraboli
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba 81310-020, Brazil
| | - Gisele Tatiane Soares da Veiga
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba 81310-020, Brazil
| | - Letusa Albrecht
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba 81310-020, Brazil
| |
Collapse
|
4
|
dos Santos NAC, Magi FN, Andrade AO, Bastos ADS, Pereira SDS, Medeiros JF, Araujo MDS. Assessment of antibiotic treatment on Anopheles darlingi survival and susceptibility to Plasmodium vivax. Front Microbiol 2022; 13:971083. [PMID: 36274692 PMCID: PMC9583876 DOI: 10.3389/fmicb.2022.971083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Antibiotic treatment has been used to enhance anopheline susceptibility to Plasmodium infection, because bacterial microbiota play a fundamental role in modulating the vector competence of mosquitoes that transmit Plasmodium parasites. However, few studies have examined the impact of antibiotic treatments on Plasmodium vivax sporogonic development in neotropical anopheline mosquitoes. Herein, we assessed the impact of antibiotic treatment on P. vivax development and survival in Anopheles darlingi, the main vector of malaria in the Amazon region. Female mosquitoes were treated continuously with antibiotics to impact the gut bacterial load and then tested for prevalence, infection intensity, and survival in comparison with untreated mosquitoes. Antibiotic-fed mosquitoes had not dramatic impact on P. vivax development previously observed in P. falciparum. However, antibiotic treatment increases mosquito survival, which is known to increase vectorial capacity. These findings raise questions about the effect of antibiotics on P. vivax development and survival in An. darlingi.
Collapse
Affiliation(s)
- Najara Akira Costa dos Santos
- Postgraduate Program in Experimental Biology, Federal University of Rondonia/Fiocruz Rondonia, Porto Velho, Brazil
- Platform of Production and Infection of Malaria Vectors (PIVEM), Laboratory of Entomology, Fiocruz Rondonia, Porto Velho, Brazil
| | - Felipe Neves Magi
- Platform of Production and Infection of Malaria Vectors (PIVEM), Laboratory of Entomology, Fiocruz Rondonia, Porto Velho, Brazil
| | - Alice Oliveira Andrade
- Platform of Production and Infection of Malaria Vectors (PIVEM), Laboratory of Entomology, Fiocruz Rondonia, Porto Velho, Brazil
| | - Alessandra da Silva Bastos
- Postgraduate Program in Experimental Biology, Federal University of Rondonia/Fiocruz Rondonia, Porto Velho, Brazil
- Platform of Production and Infection of Malaria Vectors (PIVEM), Laboratory of Entomology, Fiocruz Rondonia, Porto Velho, Brazil
| | | | - Jansen Fernandes Medeiros
- Postgraduate Program in Experimental Biology, Federal University of Rondonia/Fiocruz Rondonia, Porto Velho, Brazil
- Platform of Production and Infection of Malaria Vectors (PIVEM), Laboratory of Entomology, Fiocruz Rondonia, Porto Velho, Brazil
| | - Maisa da Silva Araujo
- Platform of Production and Infection of Malaria Vectors (PIVEM), Laboratory of Entomology, Fiocruz Rondonia, Porto Velho, Brazil
- *Correspondence: Maisa da Silva Araujo,
| |
Collapse
|
5
|
Rani J, De TD, Chauhan C, Kumari S, Sharma P, Tevatiya S, Chakraborti S, Pandey KC, Singh N, Dixit R. Functional disruption of transferrin expression alters reproductive physiology in Anopheles culicifacies. PLoS One 2022; 17:e0264523. [PMID: 35245324 PMCID: PMC8896695 DOI: 10.1371/journal.pone.0264523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 02/11/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Iron metabolism is crucial to maintain optimal physiological homeostasis of every organism and any alteration of the iron concentration (i.e. deficit or excess) can have adverse consequences. Transferrins are glycoproteins that play important role in iron transportation and have been widely characterized in vertebrates and insects, but poorly studied in blood-feeding mosquitoes. RESULTS We characterized a 2102 bp long transcript AcTrf1a with complete CDS of 1872bp, and 226bp UTR region, encoding putative transferrin homolog protein from mosquito An. culicifacies. A detailed in silico analysis predicts AcTrf1a encodes 624 amino acid (aa) long polypeptide that carries transferrin domain. AcTrf1a also showed a putative N-linked glycosylation site, a characteristic feature of most of the mammalian transferrins and certain non-blood feeding insects. Structure modelling prediction confirms the presence of an iron-binding site at the N-terminal lobe of the transferrin. Our spatial and temporal expression analysis under altered pathophysiological conditions showed that AcTrf1a is abundantly expressed in the fat-body, ovary, and its response is significantly altered (enhanced) after blood meal uptake, and exogenous bacterial challenge. Additionally, non-heme iron supplementation of FeCl3 at 1 mM concentration not only augmented the AcTrf1a transcript expression in fat-body but also enhanced the reproductive fecundity of gravid adult female mosquitoes. RNAi-mediated knockdown of AcTrf1a causes a significant reduction in fecundity, confirming the important role of transferrin in oocyte maturation. CONCLUSION All together our results advocate that detailed characterization of newly identified AcTrf1a transcript may help to select it as a unique target to impair the mosquito reproductive outcome.
Collapse
Affiliation(s)
- Jyoti Rani
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
- Department of Biotechnology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Tanwee Das De
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Charu Chauhan
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Seena Kumari
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Punita Sharma
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Sanjay Tevatiya
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Soumyananda Chakraborti
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Kailash C. Pandey
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Namita Singh
- Department of Biotechnology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Rajnikant Dixit
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| |
Collapse
|
6
|
Rani J, Chauhan C, Das De T, Kumari S, Sharma P, Tevatiya S, Patel K, Mishra AK, Pandey KC, Singh N, Dixit R. Hemocyte RNA-Seq analysis of Indian malarial vectors Anopheles stephensi and Anopheles culicifacies: From similarities to differences. Gene 2021; 798:145810. [PMID: 34224830 DOI: 10.1016/j.gene.2021.145810] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 02/05/2023]
Abstract
Anopheles stephensi and Anopheles culicifacies are dominant malarial vectors in urban and rural India, respectively. Both species carry significant biological differences in their behavioral adaptation and immunity, but the genetic basis of these variations are still poorly understood. Here, we uncovered the genetic differences of immune blood cells, that influence several immune-physiological responses. We generated, analyzed and compared the hemocyte RNA-Seq database of both mosquitoes. A total of 5,837,223,769 assembled bases collapsed into 7,595 and 3,791 transcripts, originating from hemocytes of laboratory-reared 3-4 days old naïve (sugar-fed) mosquitoes, Anopheles stephensi and Anopheles culicifacies respectively. Comparative GO annotation analysis revealed that both mosquito hemocytes encode similar proteins. Furthermore, while An. stephensi hemocytes showed a higher percentage of immune transcripts encoding APHAG (Autophagy), IMD (Immune deficiency pathway), PRDX (Peroxiredoxin), SCR (Scavenger receptor), IAP (Inhibitor of apoptosis), GALE (galactoside binding lectins), BGBPs (1,3 beta D glucan binding proteins), CASPs (caspases) and SRRP (Small RNA regulatory pathway), An. culicifacies hemocytes yielded a relatively higher percentage of transcripts encoding CLIP (Clip domain serine protease), FREP (Fibrinogen related proteins), PPO (Prophenol oxidase), SRPN (Serpines), ML (Myeloid differentiation 2-related lipid recognition protein), Toll path and TEP (Thioester protein), family proteins. However, a detailed comparative Interproscan analysis showed An. stephensi mosquito hemocytes encode proteins with increased repeat numbers as compared to An. culicifacies. Notably, we observed an abundance of transcripts showing significant variability of encoded proteins with repeats such as LRR (Leucine rich repeat), WD40 (W-D dipeptide), Ankyrin, Annexin, Tetratricopeptide and Mitochondrial substrate carrier repeat-containing family proteins, which may have a direct influence on species-specific immune-physiological responses. Summarily, our deep sequencing analysis unraveled that An. stephensi evolved with an expansion of repeat sequences in hemocyte proteins as compared to An. culicifacies, possibly providing an advantage for better adaptation to diverse environments.
Collapse
Affiliation(s)
- Jyoti Rani
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India; Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Charu Chauhan
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India
| | - Tanwee Das De
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India
| | - Seena Kumari
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India
| | - Punita Sharma
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India
| | - Sanjay Tevatiya
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India
| | - Karan Patel
- DNA Xperts Private Limited, Sector 63, Noida, Uttar Pradesh 20130, India
| | - Ashwani K Mishra
- DNA Xperts Private Limited, Sector 63, Noida, Uttar Pradesh 20130, India
| | - Kailash C Pandey
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India
| | - Namita Singh
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Rajnikant Dixit
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India.
| |
Collapse
|