1
|
Larges J, Deconninck G, Ulmer R, Foray V, Le Bris N, Chorin M, Colinet H, Chabrerie O, Eslin P, Couty A. Winter fruit contribution to the performance of the invasive fruit fly Drosophila suzukii under different thermal regimes. INSECT SCIENCE 2025. [PMID: 39822047 DOI: 10.1111/1744-7917.13494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/06/2024] [Accepted: 11/27/2024] [Indexed: 01/19/2025]
Abstract
Polyphagous insect species develop using multiple host plants. Often considered beneficial, polyphagy can also be costly as host nutritional quality may vary. Drosophila suzukii (Matsumura) is an invasive species that can develop on numerous fruit species over the annual cycle. Here, we assessed the contribution of winter-available fruit to the development of seasonal populations of D. suzukii, under fluctuating late winter/early spring temperature regimes. We infested an artificial diet and three suitable fruit species available in winter/early spring (Aucuba japonica, Elaeagnus ×submacrophylla, Viscum album) with D. suzukii larvae under three temperature regimes: constant 20 °C, fluctuating controlled regime of 8-15 °C (12 h of light at 8 °C and 12 h of dark at 15 °C), and uncontrolled outdoor regime during spring. As expected, fly performance was impaired by early spring-like environmental conditions, whatever the development diet, and the winter fruit were suboptimal diets compared to the artificial diet, whatever the thermal regime. However, under cold fluctuating temperature regimes, the ranking of fruit supporting the best performance changed, highlighting the occurrence of physiological trade-offs. Winter-acclimated females preferentially oviposited in A. japonica and/or E. ×submacrophylla, whatever the thermal regime, which does not support the preference-performance hypothesis. This finding is also discussed in the context of D. suzukii management strategies.
Collapse
Affiliation(s)
- Jordy Larges
- EDYSAN, Ecologie et Dynamique des Systèmes Anthropisés, UMR 7058 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Gwenaëlle Deconninck
- IRBI, Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours, France
| | - Romain Ulmer
- EDYSAN, Ecologie et Dynamique des Systèmes Anthropisés, UMR 7058 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Vincent Foray
- IRBI, Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours, France
| | - Nathalie Le Bris
- Université de Rennes, CNRS, ECOBIO (Ecosystemes, biodiversité, évolution), Rennes cedex, France
| | - Marion Chorin
- Université de Rennes, CNRS, ECOBIO (Ecosystemes, biodiversité, évolution), Rennes cedex, France
| | - Hervé Colinet
- Université de Rennes, CNRS, ECOBIO (Ecosystemes, biodiversité, évolution), Rennes cedex, France
| | - Olivier Chabrerie
- EDYSAN, Ecologie et Dynamique des Systèmes Anthropisés, UMR 7058 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Patrice Eslin
- EDYSAN, Ecologie et Dynamique des Systèmes Anthropisés, UMR 7058 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Aude Couty
- EDYSAN, Ecologie et Dynamique des Systèmes Anthropisés, UMR 7058 CNRS, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
2
|
Reyes-Ramírez A, Belgaidi Z, Gibert P, Pommier T, Siberchicot A, Mouton L, Desouhant E. Larval density in the invasive Drosophila suzukii: Immediate and delayed effects on life-history traits. Ecol Evol 2023; 13:e10433. [PMID: 37636864 PMCID: PMC10450837 DOI: 10.1002/ece3.10433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
The effects of density are key in determining population dynamics, since they can positively or negatively affect the fitness of individuals. These effects have great relevance for polyphagous insects for which immature stages develop within a single site of finite feeding resources. Drosophila suzukii is a crop pest that induces severe economic losses for agricultural production; however, little is known about the effects of density on its life-history traits. In the present study, we (i) investigated the egg distribution resulting from females' egg-laying strategy and (ii) tested the immediate (on immatures) and delayed (on adults) effects of larval density on emergence rate, development time, potential fecundity, and adult size. The density used varied in a range between 1 and 50 larvae. We showed that 44.27% of the blueberries used for the oviposition assay contained between 1 and 11 eggs in aggregates. The high experimental density (50 larvae) has no immediate effect in the emergence rate but has effect on larval developmental time. This trait was involved in a trade-off with adult life-history traits: The time of larval development was reduced as larval density increased, but smaller and less fertile females were produced. Our results clearly highlight the consequences of larval crowding on the juveniles and adults of this fly.
Collapse
Affiliation(s)
- Alicia Reyes-Ramírez
- UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, CNRS, VetAgro Sup, Université de Lyon Université Claude Bernard Lyon 1 Villeurbanne Cedex France
| | - Zaïnab Belgaidi
- UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, CNRS, VetAgro Sup, Université de Lyon Université Claude Bernard Lyon 1 Villeurbanne Cedex France
| | - Patricia Gibert
- UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, CNRS, VetAgro Sup, Université de Lyon Université Claude Bernard Lyon 1 Villeurbanne Cedex France
| | - Thomas Pommier
- UMR 1418, Laboratoire d'Ecologie Microbienne, INRAE, CNRS, VetAgro Sup Université Claude Bernard Lyon 1 Villeurbanne Cedex France
| | - Aurélie Siberchicot
- UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, CNRS, VetAgro Sup, Université de Lyon Université Claude Bernard Lyon 1 Villeurbanne Cedex France
| | - Laurence Mouton
- UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, CNRS, VetAgro Sup, Université de Lyon Université Claude Bernard Lyon 1 Villeurbanne Cedex France
| | - Emmanuel Desouhant
- UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, CNRS, VetAgro Sup, Université de Lyon Université Claude Bernard Lyon 1 Villeurbanne Cedex France
| |
Collapse
|
3
|
Lazarević J, Milanović S, Šešlija Jovanović D, Janković-Tomanić M. Temperature- and Diet-Induced Plasticity of Growth and Digestive Enzymes Activity in Spongy Moth Larvae. Biomolecules 2023; 13:biom13050821. [PMID: 37238690 DOI: 10.3390/biom13050821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Temperature and food quality are the most important environmental factors determining the performance of herbivorous insects. The objective of our study was to evaluate the responses of the spongy moth (formerly known as the gypsy moth) [Lymantria dispar L. (Lepidoptera: Erebidae)] to simultaneous variation in these two factors. From hatching to the fourth instar, larvae were exposed to three temperatures (19 °C, 23 °C, and 28 °C) and fed four artificial diets that differed in protein (P) and carbohydrate (C) content. Within each temperature regime, the effects of the nutrient content (P+C) and ratio (P:C) on development duration, larval mass, growth rate, and activities of digestive proteases, carbohydrases, and lipase were examined. It was found that temperature and food quality had a significant effect on the fitness-related traits and digestive physiology of the larvae. The greatest mass and highest growth rate were obtained at 28 °C on a high-protein low-carbohydrate diet. A homeostatic increase in activity was observed for total protease, trypsin, and amylase in response to low substrate levels in the diet. A significant modulation of overall enzyme activities in response to 28 °C was detected only with a low diet quality. A decrease in the nutrient content and P:C ratio only affected the coordination of enzyme activities at 28 °C, as indicated by the significantly altered correlation matrices. Multiple linear regression analysis showed that variation in fitness traits in response to different rearing conditions could be explained by variation in digestion. Our results contribute to the understanding of the role of digestive enzymes in post-ingestive nutrient balancing.
Collapse
Affiliation(s)
- Jelica Lazarević
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Slobodan Milanović
- Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemĕdĕlská 3, 613 00 Brno, Czech Republic
| | - Darka Šešlija Jovanović
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Milena Janković-Tomanić
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
4
|
Olazcuaga L, Foucaud J, Deschamps C, Loiseau A, Claret J, Vedovato R, Guilhot R, Sévely C, Gautier M, Hufbauer RA, Rode NO, Estoup A. Rapid and transient evolution of local adaptation to seasonal host fruits in an invasive pest fly. Evol Lett 2022; 6:490-505. [PMID: 36579160 PMCID: PMC9783429 DOI: 10.1002/evl3.304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/12/2022] [Accepted: 10/27/2022] [Indexed: 12/30/2022] Open
Abstract
Both local adaptation and adaptive phenotypic plasticity can influence the match between phenotypic traits and local environmental conditions. Theory predicts that environments stable for multiple generations promote local adaptation, whereas highly heterogeneous environments favor adaptive phenotypic plasticity. However, when environments have periods of stability mixed with heterogeneity, the relative importance of local adaptation and adaptive phenotypic plasticity is unclear. Here, we used Drosophila suzukii as a model system to evaluate the relative influence of genetic and plastic effects on the match of populations to environments with periods of stability from three to four generations. This invasive pest insect can develop within different fruits, and persists throughout the year in a given location on a succession of distinct host fruits, each one being available for only a few generations. Using reciprocal common environment experiments of natural D. suzukii populations collected from cherry, strawberry, and blackberry, we found that both oviposition preference and offspring performance were higher on medium made with the fruit from which the population originated than on media made with alternative fruits. This pattern, which remained after two generations in the laboratory, was analyzed using a statistical method we developed to quantify the contributions of local adaptation and adaptive plasticity in determining fitness. Altogether, we found that genetic effects (local adaptation) dominate over plastic effects (adaptive phenotypic plasticity). Our study demonstrates that spatially and temporally variable selection does not prevent the rapid evolution of local adaptation in natural populations. The speed and strength of adaptation may be facilitated by several mechanisms including a large effective population size and strong selective pressures imposed by host plants.
Collapse
Affiliation(s)
- Laure Olazcuaga
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France,Department of Agricultural BiologyColorado State UniversityFort CollinsColorado80523USA
| | - Julien Foucaud
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Candice Deschamps
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Anne Loiseau
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Jean‐Loup Claret
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Romain Vedovato
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Robin Guilhot
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Cyril Sévely
- Chambre d'agriculture de l'HéraultLattes34875France
| | - Mathieu Gautier
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Ruth A. Hufbauer
- Department of Agricultural BiologyColorado State UniversityFort CollinsColorado80523USA,Graduate Degree Program in EcologyColorado State UniversityFort CollinsColorado80523USA
| | - Nicolas O. Rode
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Arnaud Estoup
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| |
Collapse
|
5
|
Drosophila suzukii energetic pathways are differently modulated by nutritional geometry in males and females. Sci Rep 2022; 12:21194. [PMID: 36476948 PMCID: PMC9729594 DOI: 10.1038/s41598-022-25509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
As a polyphagous pest, Drosophila suzukii has a variety of host fruits available for feeding and oviposition, but how the nutritional geometry of different hosts influences its metabolism is still poorly understood. This work aimed to evaluate how D. suzukii metabolic and transcriptional pathways are influenced by feeding on different host fruits, and how sex influences these responses. Adult flies were allowed to feed on five different fruit-based media. Lipids, glucose, glycogen, and energy pathways-associated gene expression, were quantified. Females showed an energetic metabolism easily adaptable to the food's nutritional characteristics; in contrast, males' energetic metabolism was particularly influenced by food, predominantly those fed on raspberry media who showed changes in glucose levels and in the expression of genes associated with metabolic pathways, suggesting activation of gluconeogenesis and trehaloneogenesis as a result of nutritional deficiency. Here we present novel insight into how D. suzukii's energetic pathways are modulated depending on fruits' nutritional geometry and sex. While the females showed high adaptability in their energetic metabolism to the diet, males were more feeding-sensitive. These findings might be used not only to control this pest population but to better advise producers to invest in less suitable fruits based on the hosts' nutritional geometry.
Collapse
|