1
|
Roy S, Raychaudhuri S, Biswas B, Dabkara D, Bhattacherjee A, Ganguly S, Ghosh J, Patel YS, Pal S, Karmakar J, Mitra A, Gupta S. Pattern of care and treatment outcomes of metastatic non-clear cell kidney cancer: a single centre experience from India. Ecancermedicalscience 2024; 18:1775. [PMID: 39430082 PMCID: PMC11489090 DOI: 10.3332/ecancer.2024.1775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Indexed: 10/22/2024] Open
Abstract
Background Non-clear-cell renal cell carcinoma (nccRCC) refers to a rare diverse heterogeneous group of tumours; usually treated with immune check point inhibitors and or tyrosine kinase inhibitors (TKIs). Prospective large-scale data from Asian countries is limited. Methods This is a retrospective study of patients with metastatic nccRCC treated at Tata Medical Centre, Kolkata, India, from 2012 to 2022. Demographic profiles, histologic subtypes, treatment details, response to therapy (by response evaluation criteria in solid tumours (RECIST v1.1)) and survival status were captured from electronic medical records (EMRs) of hospitals up till May 2023. Kaplan Meier methods were estimated to assess progression-free survival (PFS) and overall survival (OS). Results A total of 89 consecutive patients were screened for this study, 24 were excluded due to inadequate data in EMR. 65 patients were included in the final analysis, with a median age at diagnosis of 59 years (range 20-84) of which 81% were male. Histologic subtypes comprised of 43% papillary, 31% clear cell with mixed histology, 3% sarcomatoid and 23% others including chromophobe, mucinous-tubular, spindle cell, oncocytic, medullary, poorly differentiated and rhabdoid). The most common site of metastasis was the lung 62% (n = 40) followed by non-regional nodes 32%, bone 26% and liver 14%. 15% patients presented with haematuria and 62% underwent nephrectomy prior to systemic therapy. The majority received pazopanib 46% (n = 30), chemotherapy 20% (n = 13) including bevacizumab plus erlotinib, sunitinib 15% (n = 10) or cabozantinib 14% (n = 9). Only 3(5%) patients received nivolumab plus cabozantinib combination. Response to treatment showed complete response in 1.5%, partial response in 20%, stable disease in 51% and progressive disease in 23% as per RECIST v1.1. 17 patients required dose reduction and interruption due to adverse effects and 33% (n = 22) received second-line therapy with nivolumab 18% (n = 4), axitinib and everolimus among others. After a median follow up of 44 months, the median PFS was 13 months (95%CI 7.2-18.9) and the median OS was 17 months (95%CI 12.1-22.1) for the entire cohort. Conclusion The overall response and survival for metastatic nccRCC was relatively better in comparison with published data, despite the limited number of patients treated with ICIs due to cost and access barriers.
Collapse
Affiliation(s)
- Somnath Roy
- Department of Medical Oncology, Tata Medical Center, 14 MAR (EW), New Town, Rajarhat, Kolkata 700160, West Bengal, India
| | - Sreejata Raychaudhuri
- Department of Medical Oncology, Tata Medical Center, 14 MAR (EW), New Town, Rajarhat, Kolkata 700160, West Bengal, India
| | - Bivas Biswas
- Department of Medical Oncology, Tata Medical Center, 14 MAR (EW), New Town, Rajarhat, Kolkata 700160, West Bengal, India
| | - Deepak Dabkara
- Department of Medical Oncology, Tata Medical Center, 14 MAR (EW), New Town, Rajarhat, Kolkata 700160, West Bengal, India
| | - Arnab Bhattacherjee
- Department of Medical Oncology, Tata Medical Center, 14 MAR (EW), New Town, Rajarhat, Kolkata 700160, West Bengal, India
| | - Sandip Ganguly
- Department of Medical Oncology, Tata Medical Center, 14 MAR (EW), New Town, Rajarhat, Kolkata 700160, West Bengal, India
| | - Joydeep Ghosh
- Department of Medical Oncology, Tata Medical Center, 14 MAR (EW), New Town, Rajarhat, Kolkata 700160, West Bengal, India
| | - Yesha Sandipbhai Patel
- Department of Medical Oncology, Tata Medical Center, 14 MAR (EW), New Town, Rajarhat, Kolkata 700160, West Bengal, India
| | - Souhita Pal
- Department of Medical Oncology, Tata Medical Center, 14 MAR (EW), New Town, Rajarhat, Kolkata 700160, West Bengal, India
| | - Jagriti Karmakar
- Department of Medical Oncology, Tata Medical Center, 14 MAR (EW), New Town, Rajarhat, Kolkata 700160, West Bengal, India
| | - Anindita Mitra
- Department of Medical Oncology, Tata Medical Center, 14 MAR (EW), New Town, Rajarhat, Kolkata 700160, West Bengal, India
| | - Sujoy Gupta
- Uro-Surgery, Tata Medical Center, 14 MAR (EW), New Town, Rajarhat, Kolkata 700160, West Bengal, India
| |
Collapse
|
2
|
Li J, Luo P, Liu S, Fu M, Lin A, Liu Y, He Z, Qiao K, Fang Y, Qu L, Yang K, Wang K, Wang L, Jiang A. Effective strategies to enhance the diagnosis and treatment of RCC: The application of biocompatible materials. Mater Today Bio 2024; 27:101149. [PMID: 39100279 PMCID: PMC11296058 DOI: 10.1016/j.mtbio.2024.101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 08/06/2024] Open
Abstract
Renal cell carcinoma (RCC) is recognized as one of the three primary malignant tumors affecting the urinary system, posing a significant risk to human health and life. Despite advancements in understanding RCC, challenges persist in its diagnosis and treatment, particularly in early detection and diagnosis due to issues of low specificity and sensitivity. Consequently, there is an urgent need for the development of effective strategies to enhance diagnostic accuracy and treatment outcomes for RCC. In recent years, with the extensive research on materials for applications in the biomedical field, some materials have been identified as promising for clinical applications, e.g., in the diagnosis and treatment of many tumors, including RCC. Herein, we summarize the latest materials that are being studied and have been applied in the early diagnosis and treatment of RCC. While focusing on their adjuvant effects, we also discuss their technical principles and safety, thus highlighting the value and potential of their application. In addition, we also discuss the limitations of the application of these materials and possible future directions, providing new insights for improving RCC diagnosis and treatment.
Collapse
Affiliation(s)
- Jinxin Li
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Shiyang Liu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Meiling Fu
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Ying Liu
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Ziwei He
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Kun Qiao
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yu Fang
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Le Qu
- Department of Urology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210000, China
| | - Kaidi Yang
- Department of Oncology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan, 572000, China
- Department of Oncology, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Kunpeng Wang
- Department of Urology, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222061, China
- Department of Urology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The first People's Hospital of Lianyungang, 222061, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| |
Collapse
|
3
|
Mrdenovic S, Wang Y, Yin L, Chu GCY, Ou Y, Lewis MS, Heffer M, Posadas EM, Zhau HE, Chung LWK, Edderkaoui M, Pandol SJ, Wang R, Zhang Y. A cisplatin conjugate with tumor cell specificity exhibits antitumor effects in renal cancer models. BMC Cancer 2023; 23:499. [PMID: 37268911 PMCID: PMC10236852 DOI: 10.1186/s12885-023-10878-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/24/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer and is notorious for its resistance to both chemotherapy and small-molecule inhibitor targeted therapies. Subcellular targeted cancer therapy may thwart the resistance to produce a substantial effect. METHODS We tested whether the resistance can be circumvented by subcellular targeted cancer therapy with DZ-CIS, which is a chemical conjugate of the tumor-cell specific heptamethine carbocyanine dye (HMCD) with cisplatin (CIS), a chemotherapeutic drug with limited use in ccRCC treatment because of frequent renal toxicity. RESULTS DZ-CIS displayed cytocidal effects on Caki-1, 786-O, ACHN, and SN12C human ccRCC cell lines and mouse Renca cells in a dose-dependent manner and inhibited ACHN and Renca tumor formation in experimental mouse models. Noticeably, in tumor-bearing mice, repeated DZ-CIS use did not cause renal toxicity, in contrast to the CIS-treated control animals. In ccRCC tumors, DZ-CIS treatment inhibited proliferation markers but induced cell death marker levels. In addition, DZ-CIS at half maximal inhibitory concentration (IC50) sensitized Caki-1 cells to small-molecule mTOR inhibitors. Mechanistically, DZ-CIS selectively accumulated in ccRCC cells' subcellular organelles, where it damages the structure and function of mitochondria, leading to cytochrome C release, caspase activation, and apoptotic cancer cell death. CONCLUSIONS Results from this study strongly suggest DZ-CIS be tested as a safe and effective subcellular targeted cancer therapy.
Collapse
Affiliation(s)
- Stefan Mrdenovic
- Division of Hematology, Department of Internal Medicine, University Hospital Osijek, Osijek, Croatia
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Internal Medicine, Family Medicine and History of Medicine, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Yanping Wang
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lijuan Yin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Gina Chia-Yi Chu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yan Ou
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael S Lewis
- Departments of Pathology, Cedars-Sinai Medical Center and the VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Edwin M Posadas
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Haiyen E Zhau
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Leland W K Chung
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mouad Edderkaoui
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephen J Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ruoxiang Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Departments of Pathology, Cedars-Sinai Medical Center and the VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Yi Zhang
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Davis 3059, 90048, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Lih TM, Cho KC, Schnaubelt M, Hu Y, Zhang H. Integrated glycoproteomic characterization of clear cell renal cell carcinoma. Cell Rep 2023; 42:112409. [PMID: 37074911 DOI: 10.1016/j.celrep.2023.112409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC), a common form of RCC, is responsible for the high mortality rate of kidney cancer. Dysregulations of glycoproteins have been shown to associate with ccRCC. However, the molecular mechanism has not been well characterized. Here, a comprehensive glycoproteomic analysis is conducted using 103 tumors and 80 paired normal adjacent tissues. Altered glycosylation enzymes and corresponding protein glycosylation are observed, while two of the major ccRCC mutations, BAP1 and PBRM1, show distinct glycosylation profiles. Additionally, inter-tumor heterogeneity and cross-correlation between glycosylation and phosphorylation are observed. The relation of glycoproteomic features to genomic, transcriptomic, proteomic, and phosphoproteomic changes shows the role of glycosylation in ccRCC development with potential for therapeutic interventions. This study reports a large-scale tandem mass tag (TMT)-based quantitative glycoproteomic analysis of ccRCC that can serve as a valuable resource for the community.
Collapse
Affiliation(s)
- T Mamie Lih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Kyung-Cho Cho
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael Schnaubelt
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
5
|
Yang M, Gong C, Song K, Huang N, Chen H, Gong H, Yang Y, Guo S, Xiao H. APPL1 Is a Prognostic Biomarker and Correlated with Treg Cell Infiltration via Oxygen-Consuming Metabolism in Renal Clear Cell Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:5885203. [PMID: 36846720 PMCID: PMC9957629 DOI: 10.1155/2023/5885203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/07/2022] [Accepted: 11/24/2022] [Indexed: 02/19/2023]
Abstract
Kidney renal clear cell carcinoma (KIRC) is one of the most hazardous tumors in the urinary system. The regulation of oxygen consumption in renal clear cell carcinoma is a consequence of adaptive reprogramming of oxidative metabolism in tumor cells. APPL1 is a signaling adaptor involved in cell survival, oxidative stress, inflammation, and energy metabolism. However, the correlation of APPL1 with regulatory T cell (Treg) infiltration and prognostic value in KIRC remain unclear. In this study, we comprehensively predicted the potential function and prognostic value of APPL1 in KIRC. For KIRC patients, relatively low expression of APPL1 was associated with high degree of metastasis, pathological stage, and shorter overall time or poor prognosis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses suggested that low expression of APPL1 may be adapted to the malignant progression of tumors via affecting oxygen-consuming metabolism. In addition, the expression level of APPL1 was negatively correlated with Treg cell infiltration and chemotherapy sensitivity, which indicated that APPL1 may regulate the tumor immune infiltration and chemotherapy resistance by decrease oxygen-consuming metabolic process in KIRC. Therefore, APPL1 may become one of the important prognostic factors, and it may serve as a candidate prognostic biomarker in KIRC.
Collapse
Affiliation(s)
- Ming Yang
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Chuhui Gong
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kangping Song
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ning Huang
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Honghan Chen
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Gong
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Yang
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shujing Guo
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hengyi Xiao
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
ANO4 Expression Is a Potential Prognostic Biomarker in Non-Metastasized Clear Cell Renal Cell Carcinoma. J Pers Med 2023; 13:jpm13020295. [PMID: 36836529 PMCID: PMC9965005 DOI: 10.3390/jpm13020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Background: Over the past decade, transcriptome profiling has elucidated many pivotal pathways involved in oncogenesis. However, a detailed comprehensive map of tumorigenesis remains an enigma to solve. Propelled research has been devoted to investigating the molecular drivers of clear cell renal cell carcinoma (ccRCC). To add another piece to the puzzle, we evaluated the role of anoctamin 4 (ANO4) expression as a potential prognostic biomarker in non-metastasized ccRCC. Methods: A total of 422 ccRCC patients with the corresponding ANO4 expression and clinicopathological data were obtained from The Cancer Genome Atlas Program (TCGA). Differential expression across several clinicopathological variables was performed. The Kaplan-Meier method was used to assess the impact of ANO4 expression on the overall survival (OS), progression-free interval (PFI), disease-free interval (DFI), and disease-specific survival (DSS). Univariate and multivariate Cox logistic regression analyses were conducted to identify independent factors modulating the aforementioned outcomes. Gene set enrichment analysis (GSEA) was used to discern a set of molecular mechanisms involved in the prognostic signature. Tumor immune microenvironment was estimated using xCell. Results: ANO4 expression was upregulated in tumor samples compared to normal kidney tissue. Albeit the latter finding, low ANO4 expression is associated with advanced clinicopathological variables such as tumor grade, stage, and pT. In addition, low ANO4 expression is linked to shorter OS, PFI, and DSS. Multivariate Cox logistic regression analysis identified ANO4 expression as an independent prognostic variable in OS (HR: 1.686, 95% CI: 1.120-2.540, p = 0.012), PFI (HR: 1.727, 95% CI: 1.103-2.704, p = 0.017), and DSS (HR: 2.688, 95% CI: 1.465-4.934, p = 0.001). GSEA identified the following pathways to be enriched within the low ANO4 expression group: epithelial-mesenchymal transition, G2-M checkpoint, E2F targets, estrogen response, apical junction, glycolysis, hypoxia, coagulation, KRAS, complement, p53, myogenesis, and TNF-α signaling via NF-κB pathways. ANO4 expression correlates significantly with monocyte (ρ = -0.1429, p = 0.0033) and mast cell (ρ = 0.1598, p = 0.001) infiltration. Conclusions: In the presented work, low ANO4 expression is portrayed as a potential poor prognostic factor in non-metastasized ccRCC. Further experimental studies should be directed to shed new light on the exact molecular mechanisms involved.
Collapse
|
7
|
Li Y, Lih TSM, Dhanasekaran SM, Mannan R, Chen L, Cieslik M, Wu Y, Lu RJH, Clark DJ, Kołodziejczak I, Hong R, Chen S, Zhao Y, Chugh S, Caravan W, Naser Al Deen N, Hosseini N, Newton CJ, Krug K, Xu Y, Cho KC, Hu Y, Zhang Y, Kumar-Sinha C, Ma W, Calinawan A, Wyczalkowski MA, Wendl MC, Wang Y, Guo S, Zhang C, Le A, Dagar A, Hopkins A, Cho H, Leprevost FDV, Jing X, Teo GC, Liu W, Reimers MA, Pachynski R, Lazar AJ, Chinnaiyan AM, Van Tine BA, Zhang B, Rodland KD, Getz G, Mani DR, Wang P, Chen F, Hostetter G, Thiagarajan M, Linehan WM, Fenyö D, Jewell SD, Omenn GS, Mehra R, Wiznerowicz M, Robles AI, Mesri M, Hiltke T, An E, Rodriguez H, Chan DW, Ricketts CJ, Nesvizhskii AI, Zhang H, Ding L. Histopathologic and proteogenomic heterogeneity reveals features of clear cell renal cell carcinoma aggressiveness. Cancer Cell 2023; 41:139-163.e17. [PMID: 36563681 PMCID: PMC9839644 DOI: 10.1016/j.ccell.2022.12.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/18/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Clear cell renal cell carcinomas (ccRCCs) represent ∼75% of RCC cases and account for most RCC-associated deaths. Inter- and intratumoral heterogeneity (ITH) results in varying prognosis and treatment outcomes. To obtain the most comprehensive profile of ccRCC, we perform integrative histopathologic, proteogenomic, and metabolomic analyses on 305 ccRCC tumor segments and 166 paired adjacent normal tissues from 213 cases. Combining histologic and molecular profiles reveals ITH in 90% of ccRCCs, with 50% demonstrating immune signature heterogeneity. High tumor grade, along with BAP1 mutation, genome instability, increased hypermethylation, and a specific protein glycosylation signature define a high-risk disease subset, where UCHL1 expression displays prognostic value. Single-nuclei RNA sequencing of the adverse sarcomatoid and rhabdoid phenotypes uncover gene signatures and potential insights into tumor evolution. In vitro cell line studies confirm the potential of inhibiting identified phosphoproteome targets. This study molecularly stratifies aggressive histopathologic subtypes that may inform more effective treatment strategies.
Collapse
Affiliation(s)
- Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Tung-Shing M Lih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Saravana M Dhanasekaran
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Rahul Mannan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Marcin Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yige Wu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Rita Jiu-Hsien Lu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - David J Clark
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Iga Kołodziejczak
- International Institute for Molecular Oncology, 60-203 Poznań, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Runyu Hong
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Siqi Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Yanyan Zhao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Seema Chugh
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wagma Caravan
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Nataly Naser Al Deen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Noshad Hosseini
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Yuanwei Xu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Kyung-Cho Cho
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Yuping Zhang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chandan Kumar-Sinha
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anna Calinawan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Michael C Wendl
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Mathematics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yuefan Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Shenghao Guo
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Anne Le
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Aniket Dagar
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alex Hopkins
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hanbyul Cho
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Xiaojun Jing
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guo Ci Teo
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wenke Liu
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Melissa A Reimers
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Russell Pachynski
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Alexander J Lazar
- Departments of Pathology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brian A Van Tine
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | | | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Fenyö
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Gilbert S Omenn
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Human Genetics, and School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maciej Wiznerowicz
- International Institute for Molecular Oncology, 60-203 Poznań, Poland; Heliodor Swiecicki Clinical Hospital in Poznań, ul. Przybyszewskiego 49, 60-355 Poznań, Poland; Poznań University of Medical Sciences, 61-701 Poznań, Poland
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Eunkyung An
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63130, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
8
|
Manzi M, Zabalegui N, Monge ME. Postoperative Metabolic Phenoreversion in Clear Cell Renal Cell Carcinoma. J Proteome Res 2023; 22:1-15. [PMID: 36484409 DOI: 10.1021/acs.jproteome.2c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ultimate goal of surgical treatment in cancer is to remove the tumor mass for restoring a healthy state. A 16-lipid panel that discriminated healthy controls from clear cell renal cell carcinoma (ccRCC) patients in a prior study was evaluated in the present work in paired-serum samples collected from patients (n = 41) before and after nephrectomy. Changes in the lipid and metabolite fingerprints from ccRCC patients were investigated and compared with fingerprints from healthy individuals obtained by means of ultra-performance liquid chromatography-high-resolution mass spectrometry. The lipid panel differentiated phenotypes associated with metabolic restoration after surgery, representing a serum signature of phenoreversion to a healthy metabolic state. In particular, PC 16:0/0:0, PC 18:2/18:2, and linoleic acid allowed discriminating serum samples from ccRCC patients with poor prognosis from those with an improved outcome during the follow-up period. Ratios of PC 16:0/0:0 and PC 18:2/18:2 with linoleic acid levels may contribute as prognostic tools to support decision-making during the patient follow-up care. The preliminary character of these results should be validated with larger cohorts, including subjects with different ethnicities, life style, and diets. MetaboLights study references: MTBLS1839, MTBLS3838, and MTBLS4629.
Collapse
Affiliation(s)
- Malena Manzi
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina.,Departamento de Fisiología, Biología molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina
| | - Nicolás Zabalegui
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina.,Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| |
Collapse
|
9
|
Tong Y, Yu Y, Zheng H, Wang Y, Xie S, Chen C, Lu R, Guo L. Differentially Expressed Genes in Clear Cell Renal Cell Carcinoma as a Potential Marker for Prognostic and Immune Signatures. Front Oncol 2022; 11:776824. [PMID: 34976818 PMCID: PMC8716543 DOI: 10.3389/fonc.2021.776824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/24/2021] [Indexed: 01/22/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by the inactivation of the von Hippel–Lindau (VHL) gene. Of note, no other gene is mutated as frequently as VHL in ccRCC, turning out that patients with inactivated VHL constitute the majority of ccRCC-related character. Thus, differentially expressed genes (DEGs) and their molecular networks caused by VHL mutation were considered as important factors for influencing the prognosis of ccRCC. Here, we first screened out six DEGs (GSTA1, GSTA2, NAT8, FABP7, SLC17A3, and SLC17A4) which downregulated in ccRCC patients with VHL non-mutation than with the mutation. Generally, most DEGs with high expression were associated with a favorable prognosis and low-risk score. Meanwhile, we spotted transcription factors and their kinases as hubs of DEGs. Finally, we clustered ccRCC patients into three subgroups according to the expression of hub proteins, and analyzed these subgroups with clinical profile, outcome, immune infiltration, and potential Immune checkpoint blockade (ICB) response. Herein, DEGs might be a promising biomarker panel for immunotherapy and prognosis in ccRCC. Moreover, the ccRCC subtype associated with high expression of hubs fit better for ICB therapy.
Collapse
Affiliation(s)
- Ying Tong
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yiwen Yu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hui Zheng
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yanchun Wang
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Suhong Xie
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Cuncun Chen
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Renquan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lin Guo
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Chen X, Lin J, Chen M, Chen Q, Cai Z, Tang A. Identification of adhesion-associated extracellular matrix component thrombospondin 3 as a prognostic signature for clear cell renal cell carcinoma. Investig Clin Urol 2022; 63:107-117. [PMID: 34983129 PMCID: PMC8756151 DOI: 10.4111/icu.20210273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/14/2021] [Accepted: 09/30/2021] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Clear cell renal cell carcinoma (ccRCC) is a highly aggressive disease, and approximately 30% of patients are diagnosed at the metastatic stage. Even with targeted therapies, the prognosis of advanced ccRCC is poor. The aim of this study was to investigate clinical prognosis signatures by analyzing the ccRCC datasets in The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and the function of thrombospondin 3 (THBS3) in ccRCC. MATERIALS AND METHODS We analyzed the ccRCC datasets in TCGA and CPTAC to search for extracellular matrix (ECM)-related and adhesion-associated genes, and conducted overall survival, Cox, and receiver operating characteristic analyses. We also performed CCK8, colony formation, and transwell assays to compared the proliferation and migration ability of THBS3 knockout cells with those of cells without THBS3 knockout. RESULTS Comprehensive bioinformatics analysis revealed that THBS3 is a novel candidate oncogene that is overexpressed in ccRCC tumor tissue and that its elevated expression indicates poor prognosis. Our study also showed that knockdown of THBS3 inhibits proliferation, colony formation, and migration of ccRCC cells. CONCLUSIONS In summary, our data have revealed that THBS3 is upregulated in cancer tissues and could be used as a novel prognostic marker for ccRCC. Our findings thus offer theoretical support with bioinformatics analyses to the study of ECM and adhesion proteins in ccRCC, which may provide a new perspective for the clinical management of ccRCC.
Collapse
Affiliation(s)
- Xiangling Chen
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen Institute of Translational Medicine, Shenzhen, China
- Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen Institute of Translational Medicine, Shenzhen, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiatian Lin
- Department of Minimally Invasive Intervention, Peking University Shenzhen Hospital, Shenzhen, China
| | - Min Chen
- State Key Laboratory of Cell Biology, CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai, China
| | - Qiaoling Chen
- Department of Biology, NO. 6 Middle School of Changsha, Changsha, China
| | - Zhiming Cai
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen Institute of Translational Medicine, Shenzhen, China
| | - Aifa Tang
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen Institute of Translational Medicine, Shenzhen, China
- Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen Institute of Translational Medicine, Shenzhen, China.
| |
Collapse
|
11
|
Zhao C, Mo L, Lei T, Yan Y, Han S, Miao J, Gao Y, Wang X, Zhao W, Huang C. miR-5701 promoted apoptosis of clear cell renal cell carcinoma cells by targeting phosphodiesterase-1B. Anticancer Drugs 2021; 32:855-863. [PMID: 33929990 DOI: 10.1097/cad.0000000000001078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Increasing evidence has demonstrated that microRNAs play critical roles in malignant biological behaviors, including cancerogenesis, cancer progression and metastasis, through the regulation of target genes expression. As miR-5701 has recently been identified to play roles as tumor suppressor miRNA in the development of some kinds of cancers, in this study we sought to investigate the role of miR-5701 in clear cell renal cell carcinoma (ccRCC). Colony formation, cell apoptosis and proliferation assays were employed, and the results showed that miR-5701 inhibited proliferation and promoted apoptosis of ccRCC cells. Western blotting and dual-luciferase reporter assays were used to confirm that PDE1B is a new direct target of miR-5701. Furthermore, overexpression of PDE1B attenuated the effects of miR-5701, indicating that miR-5701 inhibited proliferation and promoted apoptosis of ccRCC cells via targeting PDE1B. Taken together, the data presented here indicate that t miR-5701 is a tumor suppressor in ccRCC and PDE1B is a new target of miR-5701.
Collapse
Affiliation(s)
- Changan Zhao
- Department of Pathology, School of Basic Medical Sciences
- Institute of Genetics and Developmental Biology, Xi'an Jiaotong University Health Science Center
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University
| | - Liping Mo
- Department of Pathology, School of Basic Medical Sciences
| | - Ting Lei
- Department of Pathology, School of Basic Medical Sciences
| | - Yan Yan
- Department of Pathology, The First Hospital of Xi'an
| | - Shuiping Han
- Department of Pathology, School of Basic Medical Sciences
| | - Jiyu Miao
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University
| | - Yi Gao
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an
| | - Xiaofei Wang
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University
| | - Wenbao Zhao
- Department of Pathology, School of Basic Medical Sciences
| | - Chen Huang
- Institute of Genetics and Developmental Biology, Xi'an Jiaotong University Health Science Center
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
12
|
Li F, Aljahdali IAM, Zhang R, Nastiuk KL, Krolewski JJ, Ling X. Kidney cancer biomarkers and targets for therapeutics: survivin (BIRC5), XIAP, MCL-1, HIF1α, HIF2α, NRF2, MDM2, MDM4, p53, KRAS and AKT in renal cell carcinoma. J Exp Clin Cancer Res 2021; 40:254. [PMID: 34384473 PMCID: PMC8359575 DOI: 10.1186/s13046-021-02026-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
The incidence of renal cell carcinoma (RCC) is increasing worldwide with an approximate 20% mortality rate. The challenge in RCC is the therapy-resistance. Cancer resistance to treatment employs multiple mechanisms due to cancer heterogeneity with multiple genetic and epigenetic alterations. These changes include aberrant overexpression of (1) anticancer cell death proteins (e.g., survivin/BIRC5), (2) DNA repair regulators (e.g., ERCC6) and (3) efflux pump proteins (e.g., ABCG2/BCRP); mutations and/or deregulation of key (4) oncogenes (e.g., MDM2, KRAS) and/or (5) tumor suppressor genes (e.g., TP5/p53); and (6) deregulation of redox-sensitive regulators (e.g., HIF, NRF2). Foci of tumor cells that have these genetic alterations and/or deregulation possess survival advantages and are selected for survival during treatment. We will review the significance of survivin (BIRC5), XIAP, MCL-1, HIF1α, HIF2α, NRF2, MDM2, MDM4, TP5/p53, KRAS and AKT in treatment resistance as the potential therapeutic biomarkers and/or targets in RCC in parallel with our analized RCC-relevant TCGA genetic results from each of these gene/protein molecules. We then present our data to show the anticancer drug FL118 modulation of these protein targets and RCC cell/tumor growth. Finally, we include additional data to show a promising FL118 analogue (FL496) for treating the specialized type 2 papillary RCC.
Collapse
Affiliation(s)
- Fengzhi Li
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263 USA
- Genitourinary Disease Site Research Group, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263 USA
- Kidney Cancer Research Interest Group, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263 USA
- Developmental Therapeutics (DT) Program, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263 USA
| | - Ieman A. M. Aljahdali
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263 USA
- Department of Cellular & Molecular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263 USA
| | - Renyuan Zhang
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263 USA
| | - Kent L. Nastiuk
- Genitourinary Disease Site Research Group, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263 USA
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263 USA
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263 USA
| | - John J. Krolewski
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263 USA
| | - Xiang Ling
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263 USA
- Canget BioTekpharma LLC, Buffalo, New York 14203 USA
| |
Collapse
|
13
|
Zheng JM, Gan MF, Yu HY, Ye LX, Yu QX, Xia YH, Zhou HX, Bao JQ, Guo YQ. KDF1, a Novel Tumor Suppressor in Clear Cell Renal Cell Carcinoma. Front Oncol 2021; 11:686678. [PMID: 34136411 PMCID: PMC8201614 DOI: 10.3389/fonc.2021.686678] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/05/2021] [Indexed: 01/18/2023] Open
Abstract
KDF1 has been identified as a key regulator of epidermal proliferation and differentiation, but it is unknown whether KDF1 is involved in the pathogenesis of malignancy. No study has reported the expression and function of KDF1 in renal cancer. To explore the pathologic significance of KDF1 in clear cell renal cell carcinoma (ccRCC), the expression level of KDF1 protein in the tumor tissue of ccRCC patients was examined by immunohistochemistry and Western blot while the expression level of KDF1 mRNA was analyzed by using the data from TCGA database. In vitro cell experiments and allogeneic tumor transplantation tests were performed to determine the effects of altered KDF1 expression on the phenotype of ccRCC cells. Both the KDF1 mRNA and protein were found to be decreasingly expressed in the tumor tissue of ccRCC patients when compared with the adjacent non-tumor control tissue. The expression level of KDF1 in the tumor tissue was found to correlate negatively with the tumor grade. Patients with higher KDF1 in the tumor tissue were found to have longer overall survival and disease-specific survival time. KDF1 was shown to be an independent factor influencing the disease-specific survival of the ccRCC patients. Overexpression of KDF1 was found to inhibit the proliferation, migration and invasion of ccRCC cells, which could be reversed by decreasing the expression of KDF1 again. ccRCC cells with KDF1 overexpression were found to produce smaller transgrafted tumors. These results support the idea that KDF1 is involved in ccRCC and may function as a tumor suppressor.
Collapse
Affiliation(s)
- Jing-Min Zheng
- Department of Urology, Taizhou Hospital, Wenzhou Medical University, Linhai, China.,Department of Pathology, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| | - Mei-Fu Gan
- Department of Pathology, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| | - Hong-Yuan Yu
- Department of Urology, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| | - Lu-Xia Ye
- Department of Pathology, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| | - Qing-Xin Yu
- Department of Pathology, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| | - Yu-Hui Xia
- Department of Pathology, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| | - Han-Xi Zhou
- Department of Urology, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| | - Jia-Qian Bao
- Department of Urology, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| | - Yi-Qing Guo
- Department of Urology, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| |
Collapse
|
14
|
Ishihara H, Takagi T, Kondo T, Fukuda H, Tachibana H, Yoshida K, Iizuka J, Kobayashi H, Okumi M, Ishida H, Tanabe K. Assessing improvements in metastatic renal cell carcinoma systemic treatments from the pre-cytokine to the immune checkpoint inhibitor eras: a retrospective analysis of real-world data. Jpn J Clin Oncol 2021; 51:793-801. [PMID: 33324983 DOI: 10.1093/jjco/hyaa232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/05/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Studies assessing outcome improvements over a long period according to systemic therapy strategies for metastatic renal cell carcinoma using real-world data, including the results of the recent era of immune checkpoint inhibitors, are limited. Herein, we retrospectively evaluated patients who were diagnosed with metastatic renal cell carcinoma over a 40-year span. METHODS Patients were classified into four groups based on when their metastases were diagnosed as follows: (i) the pre-cytokine era (1980-1986), (ii) the cytokine era (1987-2007), (iii) the molecular-targeted therapy (mTT) era (2008 to August 2016) and (iv) the immune checkpoint inhibitor era (September 2016 to 2018). The immune checkpoint inhibitor era consisted of second- or later-line nivolumab. Overall survival from the diagnoses of metastases was evaluated. RESULTS In total, 576 patients were evaluated, including 22 (3.82%), 231 (40.1%), 253 (43.9%) and 70 (12.2%) patients from the pre-cytokine, cytokine, molecular-targeted therapy and immune checkpoint inhibitor eras, respectively. The overall survival significantly improved with each successive era (median: 13.1 vs. 24.5 vs. 44.4 months vs. not reached in pre-cytokine vs. cytokine vs. molecular-targeted therapy vs. immune checkpoint inhibitor eras, P < 0.0001). The implementation of molecular-targeted therapy improved overall survival compared with that of cytokine (cytokine vs. molecular-targeted therapy eras, P < 0.0001). Multivariate analysis demonstrated that the era was an independent factor for overall survival (P < 0.0001), together with histopathological type; metastasis status (i.e. synchronous or metachronous); systemic therapy status (i.e. absence or presence) and bone, liver or lymph node metastasis status (all, P < 0.05). CONCLUSION This retrospective study of real-world data indicated that metastatic renal cell carcinoma outcomes improved with successive systemic therapy paradigms.
Collapse
Affiliation(s)
- Hiroki Ishihara
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshio Takagi
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Tsunenori Kondo
- Department of Urology, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Hironori Fukuda
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hidekazu Tachibana
- Department of Urology, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Kazuhiko Yoshida
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Junpei Iizuka
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hirohito Kobayashi
- Department of Urology, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Masayoshi Okumi
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hideki Ishida
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Kazunari Tanabe
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
15
|
Wang X, Lu Y, Tuo Z, Zhou H, Zhang Y, Cao Z, Peng L, Yu D, Bi L. Role of SIRT1/AMPK signaling in the proliferation, migration and invasion of renal cell carcinoma cells. Oncol Rep 2021; 45:109. [PMID: 33907836 PMCID: PMC8082341 DOI: 10.3892/or.2021.8060] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/05/2021] [Indexed: 12/27/2022] Open
Abstract
Renal cell carcinoma (RCC) is a lethal urologic tumor commonly seen in men that best responds to partial nephrectomy. An enhanced understanding of the molecular pathogenesis of RCC can broaden treatment options and tumor prevention strategies. Sirtuin 1 (SIRT1) is a NAD+-dependent deacetylase that regulates several bioactive substances, and the present study aimed to identify the role of SIRT1/AMP-activated protein kinase (AMPK) signaling in RCC progression. SIRT1 expression was detected in 100 patients with RCC using tissue microarray immunohistochemistry. SIRT1-knockdown and overexpression were performed via RNA interference and plasmid transfection. Inhibition of AMPK was used for the phenotypic rescue assays to verify whether AMPK was a downstream target of SIRT1. Reverse transcription-quantitative PCR was performed to verify transfection efficiency. Transwell, MTT and flow cytometry apoptosis assays were performed to evaluate the migration, invasion, proliferation and early apoptosis level of RCC cells. SIRT1 and AMPK protein expression in human RCC tissues and cell lines (786-O and ACHN) was detected using western blotting and immunofluorescence staining. The current results, combined with data from The Cancer Genome Atlas database, revealed that SIRT1 expression in RCC tissues was downregulated compared with in adjacent normal tissues. Additionally, high SIRT1 expression was associated with an improved prognosis in patients with RCC. Overexpression of SIRT1 inhibited the proliferation, migration and invasion of RCC cell lines and induced apoptosis, while inhibition of SIRT1 expression had the opposite effects. Further experiments indicated that SIRT1 may serve an anticancer role by upregulating the expression levels of downstream AMPK, thus revealing a potential therapeutic target for RCC.
Collapse
Affiliation(s)
- Xin Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Youlu Lu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Huan Zhou
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Ying Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhangjun Cao
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Longfei Peng
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Dexin Yu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Liangkuan Bi
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
16
|
Ren Y, Wang X, Huang S, Xu Y, Weng G, Yu R. Alternol Sensitizes Renal Carcinoma Cells to TRAIL-Induced Apoptosis. Front Pharmacol 2021; 12:560903. [PMID: 33841136 PMCID: PMC8026879 DOI: 10.3389/fphar.2021.560903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/05/2021] [Indexed: 01/25/2023] Open
Abstract
Purpose: Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL), a member of the TNF family, can selectively induce cancer cell death while sparing normal cells. However, the application of TRAIL-based antitumor therapies has been hindered due to drug resistance. Alternol is a new compound isolated from microbial fermentation that possesses antitumor activity in different tumors. In our research, we discovered that alternol can sensitize TRAIL-induced apoptosis in renal carcinoma cells (RCCs). Materials and Methods: Cytotoxic activity was measured by MTT assay. Apoptosis was probed using the PI/annexin V method. Real-time PCR and western blot were used to test the levels of mRNA and protein, respectively. Luciferase assay was used to investigate whether CHOP regulated the expression of death receptor (DR) 5 through transcription. A xenogeneic tumor transplantation model was used to evaluate the anticancer effects of alternol/TRAIL in vivo. Results: When the mechanisms were investigated, we discovered that alternol increased DR5 expression. DR5 knockdown by siRNA eliminated the enhanced effect of alternol on TRAIL-mediated apoptosis. Alternol reduced the expression of antiapoptotic proteins and increased the levels of proapoptotic proteins. Moreover, alternol increased the level of CHOP, which is necessary for the enhancing effect of alternol on TRAIL-induced apoptosis, given that downregulation of CHOP abrogated the synergistic effect. DR5 upregulation induced by alternol required the production of reactive oxygen species (ROS). Removing ROS inhibited the induction of DR5 and blocked the antiapoptotic proteins induced by alternol. Conclusion: Taken together, our research suggested that alternol increased TRAIL-mediated apoptosis via inhibiting antiapoptotic proteins and upregulating DR5 levels via ROS generation and the CHOP pathway.
Collapse
Affiliation(s)
- Yu Ren
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo Yinzhou No 2. Hospital, Ningbo, China
| | - Xue Wang
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo Yinzhou No 2. Hospital, Ningbo, China
| | - Shuaishuai Huang
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo Yinzhou No 2. Hospital, Ningbo, China
| | - Yangkai Xu
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo Yinzhou No 2. Hospital, Ningbo, China
| | - Guobin Weng
- Department of Urologic Surgery, Ningbo Urology and Nephrology Hospital, Ningbo Yinzhou No 2. Hospital, Ningbo, China
| | - Rui Yu
- Department of Biochemistry and Molecular Biology, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medical, Ningbo University, Ningbo, China
| |
Collapse
|
17
|
Manzi M, Palazzo M, Knott ME, Beauseroy P, Yankilevich P, Giménez MI, Monge ME. Coupled Mass-Spectrometry-Based Lipidomics Machine Learning Approach for Early Detection of Clear Cell Renal Cell Carcinoma. J Proteome Res 2020; 20:841-857. [PMID: 33207877 DOI: 10.1021/acs.jproteome.0c00663] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A discovery-based lipid profiling study of serum samples from a cohort that included patients with clear cell renal cell carcinoma (ccRCC) stages I, II, III, and IV (n = 112) and controls (n = 52) was performed using ultraperformance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry and machine learning techniques. Multivariate models based on support vector machines and the LASSO variable selection method yielded two discriminant lipid panels for ccRCC detection and early diagnosis. A 16-lipid panel allowed discriminating ccRCC patients from controls with 95.7% accuracy in a training set under cross-validation and 77.1% accuracy in an independent test set. A second model trained to discriminate early (I and II) from late (III and IV) stage ccRCC yielded a panel of 26 compounds that classified stage I patients from an independent test set with 82.1% accuracy. Thirteen species, including cholic acid, undecylenic acid, lauric acid, LPC(16:0/0:0), and PC(18:2/18:2), identified with level 1 exhibited significantly lower levels in samples from ccRCC patients compared to controls. Moreover, 3α-hydroxy-5α-androstan-17-one 3-sulfate, cis-5-dodecenoic acid, arachidonic acid, cis-13-docosenoic acid, PI(16:0/18:1), PC(16:0/18:2), and PC(O-16:0/20:4) contributed to discriminate early from late ccRCC stage patients. The results are auspicious for early ccRCC diagnosis after validation of the panels in larger and different cohorts.
Collapse
Affiliation(s)
- Malena Manzi
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD CABA, Argentina.,Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Junín 956, C1113AAD Buenos Aires, Argentina
| | - Martín Palazzo
- LM2S, Université de Technologie de Troyes, 12 rue Marie-Curie, CS42060 Troyes, France.,Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET, Instituto Partner de la Sociedad Max Planck, Godoy Cruz 2390, C1425FQD CABA, Argentina
| | - María Elena Knott
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD CABA, Argentina
| | - Pierre Beauseroy
- LM2S, Université de Technologie de Troyes, 12 rue Marie-Curie, CS42060 Troyes, France
| | - Patricio Yankilevich
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET, Instituto Partner de la Sociedad Max Planck, Godoy Cruz 2390, C1425FQD CABA, Argentina
| | - María Isabel Giménez
- Departamento de Diagnóstico y Tratamiento, Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, C1199ABB CABA, Argentina
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD CABA, Argentina
| |
Collapse
|
18
|
Le Trinh H, Nguyen VT, Mai NK, Tran BT, Pham QN. Successful chemotherapy management of disseminated intravascular coagulation presenting with metastatic clear cell renal carcinoma: a case report and review of the literature. J Med Case Rep 2020; 14:52. [PMID: 32312316 PMCID: PMC7171788 DOI: 10.1186/s13256-020-02369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/16/2020] [Indexed: 12/05/2022] Open
Abstract
Background Disseminated intravascular coagulation is a critical complication of advanced clear cell renal cell carcinoma, despite the rarity of the occurrence of disseminated intravascular coagulation in such tumors. The diagnosis of cancer-related disseminated intravascular coagulation is mostly based on clinical bleeding and laboratory test; available data suggest that treating the primary cancer also treats the disseminated intravascular coagulation. Among three reported cases of renal cell carcinoma-related disseminated intravascular coagulation in the literature, this is the first patient whose disseminated intravascular coagulation was successfully treated, in particular, with chemotherapy without any anti-disseminated intravascular coagulation therapies. Case presentation This case is a 66-year-old Vietnamese man who presented disseminated intravascular coagulation 2 weeks after his admission for severe back pain. At admission, his initial laboratory work-up revealed only a mild thrombocytopenia with a platelet count of 93 × 109/L (normal range, 150–450 × 109/L) without clinical bleeding. His past medical history and family history were unremarkable. An open-biopsy was performed and the definitive diagnosis was bone metastatic clear cell renal cell carcinoma based on immunohistochemistry. Two weeks after admission, the diagnosis of disseminated intravascular coagulation was confirmed according to the International Society on Thrombosis and Haemostasis. Immediately, he was treated with a paclitaxel plus carboplatin regimen and disseminated intravascular coagulation completely disappeared after one cycle of systemic chemotherapy. Until recently, 11 months subsequent to the diagnosis of disseminated intravascular coagulation, he had been being undergoing maintenance therapy for metastatic clear cell renal cell carcinoma. Conclusions First, an early detection of overt disseminated intravascular coagulation is essential, although disseminated intravascular coagulation in cancer presents as a chronic or even subclinical process with unique thrombocytopenia. Second, making a decision of systemic chemotherapy without delay at the time of disseminated intravascular coagulation diagnosis is the key to successful cancer-related disseminated intravascular coagulation treatment.
Collapse
Affiliation(s)
- Huy Le Trinh
- Department of Oncology, Hanoi Medical University Hospital, Hanoi, Vietnam
| | - Vuong Thi Nguyen
- Department of Oncology, Hanoi Medical University Hospital, Hanoi, Vietnam
| | - Ngan Kim Mai
- Department of Oncology, Hanoi Medical University Hospital, Hanoi, Vietnam
| | - Bach Trung Tran
- Department of Oncology, Hanoi Medical University Hospital, Hanoi, Vietnam
| | - Quynh Nga Pham
- Department of Oncology, Hanoi Medical University Hospital, Hanoi, Vietnam.
| |
Collapse
|
19
|
Renal Cell Carcinoma: Oncologist Point of View. KIDNEY CANCER 2020. [DOI: 10.1007/978-3-030-28333-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Concomitant radiotherapy and transarterial chemoembolization reduce skeletal-related events related to bone metastases from renal cell carcinoma. Eur Radiol 2019; 30:1525-1533. [DOI: 10.1007/s00330-019-06454-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/14/2019] [Accepted: 09/12/2019] [Indexed: 01/06/2023]
|
21
|
Pinto A, Garrido M, Aguado C, Alonso T, Gajate P, Maximiano C, García-Carbonero I, Martín A, Gallegos I, Arranz J, Puente J, Grande E. Collecting Duct Carcinoma of the Kidney: Analysis of Our Experience at the SPANISH ‘Grupo Centro’ of Genitourinary Tumors. KIDNEY CANCER 2019. [DOI: 10.3233/kca-190064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- A. Pinto
- Medical Oncology Department, University Hospital La Paz – IdiPAZ, Madrid, Spain
| | - M. Garrido
- Medical Oncology Department, University Hospital Severo Ochoa, Madrid, Spain
| | - C. Aguado
- Medical Oncology Department, University Hospital Clínico San Carlos, Madrid, Spain
| | - T. Alonso
- Medical Oncology Department, University Hospital Ramón y Cajal, Madrid, Spain
| | - P. Gajate
- Medical Oncology Department, University Hospital Ramón y Cajal, Madrid, Spain
| | - C. Maximiano
- Medical Oncology Department, University Hospital Puerta de Hierro, Majadahonda, Spain
| | | | - A. Martín
- Medical Oncology Department, University Hospital Infanta Leonor, Madrid, Spain
| | - I. Gallegos
- Medical Oncology Department, General Hospital, Segovia, Spain
| | - J.A. Arranz
- University Hospital Gregorio Marañón, Madrid, Spain
| | - J. Puente
- Medical Oncology Department, University Hospital Clínico San Carlos, Madrid, Spain
| | - E. Grande
- Medical Oncology Department, MD Anderson Cancer Center, Madrid, Spain
| |
Collapse
|
22
|
Clark DJ, Dhanasekaran SM, Petralia F, Pan J, Song X, Hu Y, da Veiga Leprevost F, Reva B, Lih TSM, Chang HY, Ma W, Huang C, Ricketts CJ, Chen L, Krek A, Li Y, Rykunov D, Li QK, Chen LS, Ozbek U, Vasaikar S, Wu Y, Yoo S, Chowdhury S, Wyczalkowski MA, Ji J, Schnaubelt M, Kong A, Sethuraman S, Avtonomov DM, Ao M, Colaprico A, Cao S, Cho KC, Kalayci S, Ma S, Liu W, Ruggles K, Calinawan A, Gümüş ZH, Geiszler D, Kawaler E, Teo GC, Wen B, Zhang Y, Keegan S, Li K, Chen F, Edwards N, Pierorazio PM, Chen XS, Pavlovich CP, Hakimi AA, Brominski G, Hsieh JJ, Antczak A, Omelchenko T, Lubinski J, Wiznerowicz M, Linehan WM, Kinsinger CR, Thiagarajan M, Boja ES, Mesri M, Hiltke T, Robles AI, Rodriguez H, Qian J, Fenyö D, Zhang B, Ding L, Schadt E, Chinnaiyan AM, Zhang Z, Omenn GS, Cieslik M, Chan DW, Nesvizhskii AI, Wang P, Zhang H. Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma. Cell 2019; 179:964-983.e31. [PMID: 31675502 PMCID: PMC7331093 DOI: 10.1016/j.cell.2019.10.007] [Citation(s) in RCA: 394] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/15/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023]
Abstract
To elucidate the deregulated functional modules that drive clear cell renal cell carcinoma (ccRCC), we performed comprehensive genomic, epigenomic, transcriptomic, proteomic, and phosphoproteomic characterization of treatment-naive ccRCC and paired normal adjacent tissue samples. Genomic analyses identified a distinct molecular subgroup associated with genomic instability. Integration of proteogenomic measurements uniquely identified protein dysregulation of cellular mechanisms impacted by genomic alterations, including oxidative phosphorylation-related metabolism, protein translation processes, and phospho-signaling modules. To assess the degree of immune infiltration in individual tumors, we identified microenvironment cell signatures that delineated four immune-based ccRCC subtypes characterized by distinct cellular pathways. This study reports a large-scale proteogenomic analysis of ccRCC to discern the functional impact of genomic alterations and provides evidence for rational treatment selection stemming from ccRCC pathobiology.
Collapse
Affiliation(s)
- David J Clark
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | | | - Francesca Petralia
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jianbo Pan
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Xiaoyu Song
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | | | - Boris Reva
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tung-Shing M Lih
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Hui-Yin Chang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chen Huang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yize Li
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dmitry Rykunov
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Qing Kay Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Lin S Chen
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Umut Ozbek
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Suhas Vasaikar
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yige Wu
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Seungyeul Yoo
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shrabanti Chowdhury
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Jiayi Ji
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Schnaubelt
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Andy Kong
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Dmitry M Avtonomov
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Minghui Ao
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Antonio Colaprico
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Song Cao
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kyung-Cho Cho
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Selim Kalayci
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shiyong Ma
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Wenke Liu
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Kelly Ruggles
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Anna Calinawan
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel Geiszler
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily Kawaler
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Guo Ci Teo
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuping Zhang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah Keegan
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Kai Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Feng Chen
- Departments of Medicine and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nathan Edwards
- Department of Biochemistry and Cellular Biology, Georgetown University, Washington, DC 20007, USA
| | - Phillip M Pierorazio
- Brady Urological Institute and Department of Urology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Xi Steven Chen
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Christian P Pavlovich
- Brady Urological Institute and Department of Urology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - A Ari Hakimi
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriel Brominski
- Department of Urology, Poznań University of Medical Sciences, Szwajcarska 3, Poznań 61-285, Poland
| | - James J Hsieh
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrzej Antczak
- Department of Urology, Poznań University of Medical Sciences, Szwajcarska 3, Poznań 61-285, Poland
| | - Tatiana Omelchenko
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin 71-252, Poland
| | - Maciej Wiznerowicz
- International Institute for Molecular Oncology, Poznań 60-203, Poland; Poznań University of Medical Sciences, Poznan 60-701, Poland
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li Ding
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Sema4, Stamford, CT 06902, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhen Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Human Genetics, and School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marcin Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA.
| | | | - Pei Wang
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA.
| |
Collapse
|
23
|
Manzi M, Riquelme G, Zabalegui N, Monge ME. Improving diagnosis of genitourinary cancers: Biomarker discovery strategies through mass spectrometry-based metabolomics. J Pharm Biomed Anal 2019; 178:112905. [PMID: 31707200 DOI: 10.1016/j.jpba.2019.112905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/24/2022]
Abstract
The genitourinary oncology field needs integration of results from basic science, epidemiological studies, clinical and translational research to improve the current methods for diagnosis. MS-based metabolomics can be transformative for disease diagnosis and contribute to global health parity. Metabolite panels are promising to translate metabolomic findings into the clinics, changing the current diagnosis paradigm based on single biomarker analysis. This review article describes capabilities of the MS-based oncometabolomics field for improving kidney, prostate, and bladder cancer detection, early diagnosis, risk stratification, and outcome. Published works are critically discussed based on the study design; type and number of samples analyzed; data quality assessment through quality assurance and quality control practices; data analysis workflows; confidence levels reported for identified metabolites; validation attempts; the overlap of discriminant metabolites for the different genitourinary cancers; and the translation capability of findings into clinical settings. Ongoing challenges are discussed, and future directions are delineated.
Collapse
Affiliation(s)
- Malena Manzi
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Ciudad de Buenos Aires, Argentina
| | - Gabriel Riquelme
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina; Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - Nicolás Zabalegui
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina; Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
24
|
Zhong B, Qin Z, Zhou H, Yang F, Wei K, Jiang X, Jia R. microRNA-505 negatively regulates HMGB1 to suppress cell proliferation in renal cell carcinoma. J Cell Physiol 2019; 234:15025-15034. [PMID: 30644098 PMCID: PMC6590343 DOI: 10.1002/jcp.28142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/02/2019] [Indexed: 01/24/2023]
Abstract
microRNAs have been recognized to regulate a wide range of biology of renal cell carcinoma (RCC). Although miR-505 has been reported to play as a suppressor in several human tumors, the physiological function of miR-505 in RCC still remain unknown. Therefore, the role of miR-505 and relevant regulatory mechanisms were investigated in RCC in this study. Quantitative real-time polymerase chain reaction was conducted to detect the expression of miR-505 and high mobility group box 1 (HMGB1) in both RCC tissues and cell lines. Immunohistochemical staining was used to assess the correlation between HMGB1 expression and PCNA expression in RCC tissues. Subsequently, the effects of miR-505 on proliferation were determined in vitro using cell counting kit-8 proliferation assays and 5-ethynyl-2'-deoxyuridine incorporation. The molecular mechanism underlying the relevance between miR-505 and HMGB1 was confirmed by luciferase assay. Xenograft tumor formation was used to reflect the proliferative capacity of miR-505 in vivo experiments. Overall, a relatively lower miR-505 and higher HMGB1 expression in RCC specimens and cell lines were found. HMGB1 was verified as a direct target of miR-505 by luciferase assay. In vitro, overexpression of miR-505 negatively regulates HMGB1 to suppress the proliferation in Caki-1; meanwhile, knock-down of miR-505 negatively regulates HMGB1 to promote the proliferation in 769P. In addition, in vivo overexpression of miR-505 could inhibit tumor cell proliferation in RCC by xenograft tumor formation. Therefore, miR-505, as a tumor suppressor, negatively regulated HMGB1 to suppress the proliferation in RCC, and might serve as a novel therapeutic target for RCC clinical treatment.
Collapse
Affiliation(s)
- Bing Zhong
- Department of UrologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina,Department of UrologyThe Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical UniversityHuai'anChina
| | - Zhiqiang Qin
- Department of UrologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Hui Zhou
- Department of UrologyHongze People's HospitalHuai'anChina
| | - Fengming Yang
- Department of OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ke Wei
- Department of Thoracic SurgeryFirst Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Xi Jiang
- Department of UrologyThe Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical UniversityHuai'anChina
| | - Ruipeng Jia
- Department of UrologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| |
Collapse
|
25
|
Zheng Y, Lan T, Wei D, Zhang G, Hou G, Yuan J, Yan F, Wang F, Meng P, Yang X, Chen G, Zhu Z, Lu Z, He W, Yuan J. Coupling the near-infrared fluorescent dye IR-780 with cabazitaxel makes renal cell carcinoma chemotherapy possible. Biomed Pharmacother 2019; 116:109001. [DOI: 10.1016/j.biopha.2019.109001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 01/22/2023] Open
|
26
|
Strizova Z, Taborska P, Stakheev D, Partlová S, Havlova K, Vesely S, Bartunkova J, Smrz D. NK and T cells with a cytotoxic/migratory phenotype accumulate in peritumoral tissue of patients with clear cell renal carcinoma. Urol Oncol 2019; 37:503-509. [PMID: 31030972 DOI: 10.1016/j.urolonc.2019.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Renal cell carcinoma (RCC) is the most lethal urologic malignancy with increasing incidence worldwide. The conventional treatment strategies for advanced or recurrent RCC are not efficient and show considerable toxicities. Adoptive cell transfer (ACT) has become a promising treatment option for multiple cancers, particularly in combination with other therapeutic approaches. ACT often utilizes extensively in vitro expanded tumor-infiltrating lymphocytes (TILs). However, TILs are a very heterogeneous mix of cell populations and only those populations that have a cytotoxic and migratory potential are thought to deliver a therapeutic impact in ACT. The identification and localization of these therapeutically potent populations are therefore needed. METHODS AND MATERIALS A total number of 57 tissue samples from 19 RCC patients who underwent radical nephrectomy was analyzed. The tissue samples were obtained from the tumor, peritumoral tissue, and the adjacent healthy renal tissue. The tissues were sliced, enzymatically dissociated into single cell suspensions and the obtained cells further analyzed by flow cytometry for the expression of markers of lymphocyte cytotoxicity - TRAIL and FasL, and a surrogate marker of lymphocyte migratory activity - PECAM-1. The analyzed data were next correlated with the clinical and histopathological data. RESULTS Non-clear cell RCC (non-ccRCC) tumors showed a significantly decreased tumor infiltration with TRAIL+FasL+ NK cells but elevated infiltration with FasL+PECAM-1+ T cells as compared with clear cell RCC (ccRCC) tumors. Further analyses revealed that the peritumoral tissue of ccRCC patients is a reservoir of TRAIL+FasL+, TRAIL+PECAM-1+, or FasL+PECAM-1+ NK and T cells. CONCLUSIONS The cytotoxic/migratory lymphocytes were identified in tumors of ccRCC patients. These lymphocytes became excluded from the tumor and accumulated in the patient's peritumoral tissue.
Collapse
Affiliation(s)
- Zuzana Strizova
- Institute of Immunology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic
| | - Pavla Taborska
- Institute of Immunology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic
| | - Dmitry Stakheev
- Institute of Immunology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic
| | - Simona Partlová
- Institute of Immunology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic
| | - Klara Havlova
- Department of Urology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic
| | - Stepan Vesely
- Department of Urology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic
| | - Jirina Bartunkova
- Institute of Immunology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic
| | - Daniel Smrz
- Institute of Immunology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic.
| |
Collapse
|
27
|
Yan C, Chang J, Song X, Yan F, Yu W, An Y, Wei F, Yang L, Ren X. Memory stem T cells generated by Wnt signaling from blood of human renal clear cell carcinoma patients. Cancer Biol Med 2019; 16:109-124. [PMID: 31119051 PMCID: PMC6528452 DOI: 10.20892/j.issn.2095-3941.2018.0118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Objective Memory stem T cells (Tscm) have attracted attention because of their enhanced self-renewal, multipotent capacity, and anti-tumor capacities. However, little is known about Tscm in patients with renal clear cell carcinoma (RCC) and the role of Wnt signaling in these cells. We evaluated Tscm from RCC patients concerning their activation of Wnt signaling in vitro and explored the mechanism of preferential survival.
Methods Flow cytometry identified surface markers and cytokines produced from accumulated Tscm in the presence of the glycogen synthase kinase beta inhibitor TWS119. Apoptosis was evaluated after induction using tumor necrosis factor-alpha. Immunofluorescence and Western blot analyses were used to investigate the activation of the nuclear factor-kappa B (NF-КB) pathway. Results RCC patients had a similar percentage of CD4+ and CD8+ Tscm as healthy donors. Activation of Wnt signaling by TWS119 resulted in the accumulation of Tscm in activated T cells, but reversal of differentiated T cells to Tscm was not achieved. Preferential survival of Tscm was associated with increased anti-apoptotic ability mediated downstream of the NF-КB activation pathway.
Conclusions The finding that Tscm can accumulate by Wnt signaling in vitro in blood from RCC patients will help in devising new cancer therapy strategies of Tscm-based adoptive immunotherapy, such as dendritic cell-stimulated Tscm, and T cell receptor or chimeric antigen receptor-engineered Tscm.
Collapse
Affiliation(s)
- Cihui Yan
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jingjing Chang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xinmiao Song
- Department of Electromyogram, 3rd Affiliated Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Fan Yan
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wenwen Yu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yang An
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
28
|
Nalli AD, Brown LE, Thomas CL, Sayers TJ, Porco JA, Henrich CJ. Sensitization of renal carcinoma cells to TRAIL-induced apoptosis by rocaglamide and analogs. Sci Rep 2018; 8:17519. [PMID: 30504817 PMCID: PMC6269514 DOI: 10.1038/s41598-018-35908-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/07/2018] [Indexed: 01/07/2023] Open
Abstract
Rocaglamide has been reported to sensitize several cell types to TRAIL-induced apoptosis. In recent years, advances in synthetic techniques have led to generation of novel rocaglamide analogs. However, these have not been extensively analyzed as TRAIL sensitizers, particularly in TRAIL-resistant renal cell carcinoma cells. Evaluation of rocaglamide and analogs identified 29 compounds that are able to sensitize TRAIL-resistant ACHN cells to TRAIL-induced, caspase-dependent apoptosis with sub-µM potency which correlated with their potency as protein synthesis inhibitors and with loss of cFLIP protein in the same cells. Rocaglamide alone induced cell cycle arrest, but not apoptosis. Rocaglates averaged 4–5-fold higher potency as TRAIL sensitizers than as protein synthesis inhibitors suggesting a potential window for maximizing TRAIL sensitization while minimizing effects of general protein synthesis inhibition. A wide range of other rocaglate effects (e.g. on JNK or RAF-MEK-ERK signaling, death receptor levels, ROS, ER stress, eIF4E phosphorylation) were assessed, but did not contribute to TRAIL sensitization. Other than a rapid loss of MCL-1, rocaglates had minimal effects on mitochondrial apoptotic pathway proteins. The identification of structurally diverse/mechanistically similar TRAIL sensitizing rocaglates provides insights into both rocaglate structure and function and potential further development for use in RCC-directed combination therapy.
Collapse
Affiliation(s)
- Ancy D Nalli
- National Cancer Institute, Molecular Targets Program, Frederick, MD, 21702, USA
| | - Lauren E Brown
- Boston University, Center for Molecular Discovery (BU-CMD), Department of Chemistry, Boston, MA, 02215, USA.
| | - Cheryl L Thomas
- National Cancer Institute, Molecular Targets Program, Frederick, MD, 21702, USA
| | - Thomas J Sayers
- National Cancer Institute, Cancer Inflammation Program, Frederick, MD, 21702, USA.,Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - John A Porco
- Boston University, Center for Molecular Discovery (BU-CMD), Department of Chemistry, Boston, MA, 02215, USA.
| | - Curtis J Henrich
- National Cancer Institute, Molecular Targets Program, Frederick, MD, 21702, USA. .,Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| |
Collapse
|
29
|
Knott ME, Manzi M, Zabalegui N, Salazar MO, Puricelli LI, Monge ME. Metabolic Footprinting of a Clear Cell Renal Cell Carcinoma in Vitro Model for Human Kidney Cancer Detection. J Proteome Res 2018; 17:3877-3888. [PMID: 30260228 DOI: 10.1021/acs.jproteome.8b00538] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A protocol for harvesting and extracting extracellular metabolites from an in vitro model of human renal cell lines was developed to profile the exometabolome by means of a discovery-based metabolomics approach using ultraperformance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry. Metabolic footprints provided by conditioned media (CM) samples ( n = 66) of two clear cell Renal Cell Carcinoma (ccRCC) cell lines with different genetic backgrounds and a nontumor renal cell line, were compared with the human serum metabolic profile of a pilot cohort ( n = 10) comprised of stage IV ccRCC patients and healthy individuals. Using a cross-validated orthogonal projection to latent structures-discriminant analysis model, a panel of 21 discriminant features selected by iterative multivariate classification, allowed differentiating control from tumor cell lines with 100% specificity, sensitivity, and accuracy. Isoleucine/leucine, phenylalanine, N-lactoyl-leucine, and N-acetyl-phenylalanine, and cysteinegluthatione disulfide (CYSSG) were identified by chemical standards, and hydroxyprolyl-valine was identified with MS and MS/MS experiments. A subset of 9 discriminant features, including the identified metabolites except for CYSSG, produced a fingerprint of classification value that enabled discerning ccRCC patients from healthy individuals. To our knowledge, this is the first time that N-lactoyl-leucine is associated with ccRCC. Results from this study provide a proof of concept that CM can be used as a serum proxy to obtain disease-related metabolic signatures.
Collapse
Affiliation(s)
- María Elena Knott
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Godoy Cruz 2390 , C1425FQD , Ciudad de Buenos Aires , Argentina
| | - Malena Manzi
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Godoy Cruz 2390 , C1425FQD , Ciudad de Buenos Aires , Argentina
| | - Nicolás Zabalegui
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Godoy Cruz 2390 , C1425FQD , Ciudad de Buenos Aires , Argentina
| | - Mario O Salazar
- Farmacognosia, Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario , Suipacha 531 , Rosario S-2002LRK , Santa Fe, Argentina
| | - Lydia I Puricelli
- Instituto de Oncología Ángel H. Roffo, Facultad de Medicina , Universidad de Buenos Aires , Av. San Martín 5481 , C1417DTB , Ciudad de Buenos Aires , Argentina
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Godoy Cruz 2390 , C1425FQD , Ciudad de Buenos Aires , Argentina
| |
Collapse
|
30
|
Yu WL, Hua ZC. Evaluation of effectiveness of granulocyte-macrophage colony-stimulating factor therapy to cancer patients after chemotherapy: a meta-analysis. Oncotarget 2018; 9:28226-28239. [PMID: 29963274 PMCID: PMC6021338 DOI: 10.18632/oncotarget.24890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 02/28/2018] [Indexed: 12/24/2022] Open
Abstract
The impact of granulocyte-macrophage colony stimulating factor (GM-CSF) on hematologic indexes and complications remains existing contradictory evidence in cancer patients after treatment of chemotherapy. Eligible studies up to March 2017 were searched and reviewed from PubMed and Wanfang databases. Totally 1043 cancer patients from 15 studies were included in our research. The result indicated that GM-CSF could significantly improve white blood cells count (SMD = 1.16, 95% CI: 0.71 – 1.61, Z = 5.03, P < 0.00001) and reduce the time to leukopenia recovery (SMD = -0.85, 95% CI: -1.16 – -0.54, Z = 5.38, P < 0.00001) in cancer patients after treatment of chemotherapy. It also could improve absolute neutrophil count (SMD = 1.11, 95% CI: 0.39 – 1.82, Z = 3.04, P = 0.002) and significantly shorten the time to neutropenia recovery (SMD = -1.47, 95% CI: -2.20 – -1.75, Z = 3.99, P < 0.0001). However, GM-CSF could not improve blood platelet (SMD = 0.46, 95% CI: -0.37 – -1.29, Z = 1.10, P = 0.27). And GM-CSF had significant connection with fever (RR = 3.44, 95% CI: 1.43 – 8.28, Z = 2.76, P = 0.006). The publication bias existed in the data of the impact of GM-CSF on blood platelet and complication. In conclusions, GM-CSF had an intimate association with some hematologic indexes and complications. Our study suggested that more hematological indexes and even more other indexes need to be observed in future studies.
Collapse
Affiliation(s)
- Wen-Liang Yu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Zi-Chun Hua
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China.,The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, China
| |
Collapse
|
31
|
Thompson JA, Motzer RJ, Molina AM, Choueiri TK, Heath EI, Redman BG, Sangha RS, Ernst DS, Pili R, Kim SK, Reyno L, Wiseman A, Trave F, Anand B, Morrison K, Doñate F, Kollmannsberger CK. Phase I Trials of Anti-ENPP3 Antibody-Drug Conjugates in Advanced Refractory Renal Cell Carcinomas. Clin Cancer Res 2018; 24:4399-4406. [PMID: 29848572 DOI: 10.1158/1078-0432.ccr-18-0481] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/19/2018] [Accepted: 05/22/2018] [Indexed: 01/02/2023]
Abstract
Purpose: To determine the safety, pharmacokinetics, and recommended phase II dose of an antibody-drug conjugate (ADC) targeting ectonucleotide phosphodiesterases-pyrophosphatase 3 (ENPP3) conjugated to monomethyl auristatin F (MMAF) in subjects with advanced metastatic renal cell carcinoma (mRCC).Patients and Methods: Two phase I studies were conducted sequentially with 2 ADCs considered equivalent, hybridoma-derived AGS-16M8F and Chinese hamster ovary-derived AGS-16C3F. AGS-16M8F was administered intravenously every 3 weeks at 5 dose levels ranging from 0.6 to 4.8 mg/kg until unacceptable toxicity or progression. The study was terminated before reaching the MTD. A second study with AGS-16C3F started with the AGS-16M8F bridging dose of 4.8 mg/kg given every 3 weeks.Results: The AGS-16M8F study (n = 26) closed before reaching the MTD. The median duration of treatment was 12 weeks (1.7-83 weeks). One subject had durable partial response (PR; 83 weeks) and 1 subject had prolonged stable disease (48 weeks). In the AGS-16C3F study (n = 34), the protocol-defined MTD was 3.6 mg/kg, but this was not tolerated in multiple doses. Reversible keratopathy was dose limiting and required multiple dose deescalations. The 1.8 mg/kg dose was determined to be safe and was associated with clinically relevant signs of antitumor response. Three of 13 subjects at 1.8 mg/kg had durable PRs (range, 100-143 weeks). Eight subjects at 2.7 mg/kg and 1.8 mg/kg had disease control >37 weeks (37.5-141 weeks).Conclusions: AGS-16C3F was tolerated and had durable antitumor activity at 1.8 mg/kg every 3 weeks. Clin Cancer Res; 24(18); 4399-406. ©2018 AACR.
Collapse
Affiliation(s)
- John A Thompson
- Division of Medical Oncology, University of Washington, Seattle, Washington.
| | - Robert J Motzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ana M Molina
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medical College, New York, New York
| | - Toni K Choueiri
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Elisabeth I Heath
- Division of Hematology/Oncology, Karmanos Cancer Center, Detroit, Michigan
| | - Bruce G Redman
- Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| | | | - D Scott Ernst
- London Health Sciences Centre, London, Ontario, Canada
| | - Roberto Pili
- Department of Oncology, Indiana University, Bloomington, Indiana
| | - Stella K Kim
- Department of Opthalmology and Visual Science, University of Texas McGovern Medical School, Houston, Texas
| | - Leonard Reyno
- Department of Translational Research, Agensys, Inc. Santa Monica, California
| | - Aya Wiseman
- Department of Translational Research, Agensys, Inc. Santa Monica, California
| | | | | | - Karen Morrison
- Department of Translational Research, Agensys, Inc. Santa Monica, California
| | - Fernando Doñate
- Department of Translational Research, Agensys, Inc. Santa Monica, California
| | | |
Collapse
|
32
|
Bilen MA, Carlisle JW, Sonpavde G. The prospects for combination therapy with capecitabine in the rapidly evolving treatment landscape of renal cell carcinoma. Expert Opin Investig Drugs 2018; 27:163-170. [PMID: 29323560 DOI: 10.1080/13543784.2018.1427731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Although significant advances have been made in the treatment of advanced renal cell carcinoma (RCC), patients still develop resistance to standard therapies and require the administration of subsequent lines of treatment. New therapeutic approaches are thus imperative to improve the prognosis for patients with RCC. AREAS COVERED Based on the current literature, we summarize the treatment of metastatic RCC, including the use of cytotoxic chemotherapy, in this review article. We also review the existing scientific literature regarding the role of capecitabine in the treatment of RCC. EXPERT OPINION Currently, targeted therapies including vascular endothelial growth factor (VEGF) and mammalian target of rapamycin (mTOR) inhibitors are widely used in the treatment of metastatic RCC. More recently, the role of immune checkpoint inhibitors has been established in the treatment of advanced RCC. Traditionally, the use of cytotoxic chemotherapy in the treatment of RCC is limited. However, cytotoxic chemotherapy may have benefit in different types of RCC, such as variant histology. Furthermore, new combinations of chemotherapy with immune checkpoint inhibitors may provide new treatment options for our patients.
Collapse
Affiliation(s)
- Mehmet Asim Bilen
- a Department of Hematology and Medical Oncology , Winship Cancer Institute of Emory University , Atlanta , GA , USA
| | - Jennifer W Carlisle
- a Department of Hematology and Medical Oncology , Winship Cancer Institute of Emory University , Atlanta , GA , USA
| | - Guru Sonpavde
- b Department of Medicine, Division of Hematology and Oncology , University of Alabama at Birmingham Comprehensive Cancer Center , Birmingham , AL , USA
| |
Collapse
|
33
|
Scanlon SE, Hegan DC, Sulkowski PL, Glazer PM. Suppression of homology-dependent DNA double-strand break repair induces PARP inhibitor sensitivity in VHL-deficient human renal cell carcinoma. Oncotarget 2018; 9:4647-4660. [PMID: 29435132 PMCID: PMC5797003 DOI: 10.18632/oncotarget.23470] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/28/2017] [Indexed: 11/25/2022] Open
Abstract
The von Hippel-Lindau (VHL) tumor suppressor gene is inactivated in the vast majority of human clear cell renal carcinomas. The pathogenesis of VHL loss is currently best understood to occur through stabilization of the hypoxia-inducible factors, activation of hypoxia-induced signaling pathways, and transcriptional reprogramming towards a pro-angiogenic and pro-growth state. However, hypoxia also drives other pro-tumorigenic processes, including the development of genomic instability via down-regulation of DNA repair gene expression. Here, we find that DNA repair genes involved in double-strand break repair by homologous recombination (HR) and in mismatch repair, which are down-regulated by hypoxic stress, are decreased in VHL-deficient renal cancer cells relative to wild type VHL-complemented cells. Functionally, this gene repression is associated with impaired DNA double-strand break repair in VHL-deficient cells, as determined by the persistence of ionizing radiation-induced DNA double-strand breaks and reduced repair activity in a homology-dependent plasmid reactivation assay. Furthermore, VHL deficiency conferred increased sensitivity to PARP inhibitors, analogous to the synthetic lethality observed between hypoxia and these agents. Finally, we discovered a correlation between VHL inactivation and reduced HR gene expression in a large panel of human renal carcinoma samples. Together, our data elucidate a novel connection between VHL-deficient renal carcinoma and hypoxia-induced down-regulation of DNA repair, and identify potential opportunities for targeting DNA repair defects in human renal cell carcinoma.
Collapse
Affiliation(s)
- Susan E. Scanlon
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Experimental Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Denise C. Hegan
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Parker L. Sulkowski
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Peter M. Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
34
|
Li X, Tang J, Huang W, Wang F, Li P, Qin C, Qin Z, Zou Q, Wei J, Hua L, Yang H, Wang Z. The M6A methyltransferase METTL3: acting as a tumor suppressor in renal cell carcinoma. Oncotarget 2017; 8:96103-96116. [PMID: 29221190 PMCID: PMC5707084 DOI: 10.18632/oncotarget.21726] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/25/2017] [Indexed: 12/30/2022] Open
Abstract
We aimed to study the role of METTL3 in renal cell carcinoma (RCC) carcinogenesis and development. Immunohistochemistry was performed in clinical tissue microarray. Expression level of METTL3 in RCC tissues and cell lines was evaluated by quantitative real-time PCR (qRT-PCR) and western blot. Then, the effects of METTL3 on proliferation, migration, invasion and cell cycle were studied in RCC cells. Additionally, in vivo study was carried out in nude mice. Negative METTL3 expression was associated with larger tumor size (P=0.010) and higher histological grade (P=0.021). Moreover, RCC patients with positive METTL3 expression had an obvious longer survival time (P=0.039). METTL3 mRNA and protein expression was lower in RCC samples compared with adjacent non-tumor samples, and lower in RCC cell lines (CAKI-1, CAKI-2 and ACHN) compared with HK-2. Afterwards, knockdown of METTL3 could obviously promote cell proliferation, migration and invasion function, and induce G0/G1 arrest. In contrast, up-regulation of METTL3 could inhibit such functions and reduce G0/G1 arrest. Additionally, up-regulation of METTL3 significantly suppressed tumor growth in vivo. Furthermore, significant changes in epithelial-to-mesenchymal transition (EMT) and PI3K-Akt-mTOR pathways were observed. Overall, our findings demonstrated that METTL3 might have a carcinostasis role in cell proliferation, migration, invasion function and cell cycle of RCC, indicating METTL3 may act as a novel marker for tumorigenesis, development and survival of RCC.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,Department of Urology, Affiliated Cancer Hospital of Jiangsu Province of Nanjing Medical University, Nanjing 210009, China
| | - Jingyuan Tang
- State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,Department of Urology, Jiangsu Province Hospital of TCM, Affiliated Hospital of Nanjing University of TCM, Nanjing 210029,China
| | - Wen Huang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Feng Wang
- State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Pu Li
- State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chao Qin
- State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhiqiang Qin
- State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qing Zou
- Department of Urology, Affiliated Cancer Hospital of Jiangsu Province of Nanjing Medical University, Nanjing 210009, China
| | - Jifu Wei
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lixin Hua
- State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haiwei Yang
- State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zengjun Wang
- State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
35
|
Tsao CK, Liaw B, He C, Galsky MD, Sfakianos J, Oh WK. Moving beyond vascular endothelial growth factor-targeted therapy in renal cell cancer: latest evidence and therapeutic implications. Ther Adv Med Oncol 2017; 9:287-298. [PMID: 28491148 DOI: 10.1177/1758834016687261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Renal cell cancer (RCC) continues to be among the most lethal malignancies in the USA. Introduction of anti-vascular epidermal growth factor receptor tyrosine kinase inhibitors over a decade ago resulted in improvement in disease outcomes, but further development of new therapies largely stagnated for many years. More recently, a better understanding of disease biology and treatment-resistance patterns has led to a second renaissance in drug development, with the anti-programmed cell death protein 1 immune checkpoint inhibitor, nivolumab, paving the way for additional therapies entering clinical trial testing in the treatment of RCC.
Collapse
Affiliation(s)
- Che-Kai Tsao
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, 1 Gustave L Levy Place, New York, NY 10029, USA
| | - Bobby Liaw
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Catherine He
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D Galsky
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Sfakianos
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William K Oh
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
36
|
Affiliation(s)
- Toni K Choueiri
- From the Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston (T.K.C.); and the Department of Medicine, Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York (R.J.M.)
| | - Robert J Motzer
- From the Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston (T.K.C.); and the Department of Medicine, Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York (R.J.M.)
| |
Collapse
|
37
|
Gstalder C, Ader I, Cuvillier O. FTY720 (Fingolimod) Inhibits HIF1 and HIF2 Signaling, Promotes Vascular Remodeling, and Chemosensitizes in Renal Cell Carcinoma Animal Model. Mol Cancer Ther 2016; 15:2465-2474. [PMID: 27507852 DOI: 10.1158/1535-7163.mct-16-0167] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/07/2016] [Indexed: 11/16/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by intratumoral hypoxia and chemoresistance. The hypoxia-inducible factors HIF1α and HIF2α play a crucial role in ccRCC initiation and progression. We previously identified the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) pathway as a new modulator of HIF1α and HIF2α under hypoxia in various cancer cell models. Here, we report that FTY720, an inhibitor of the S1P signaling pathway, inhibits both HIF1α and HIF2α accumulation in several human cancer cell lines. In a ccRCC heterotopic xenograft model, we show that FTY720 transiently decreases HIF1α and HIF2α intratumoral level and modifies tumor vessel architecture within 5 days of treatment, suggesting a vascular normalization. In mice bearing subcutaneous ccRCC tumor, FTY720 and a gemcitabine-based chemotherapy alone display a limited effect, whereas, in combination, there is a significant effect on tumor size without toxicity. Noteworthy, administration of FTY720 for 5 days before chemotherapy is not associated with a more effective tumor control, suggesting a mode of action mainly independent of the vascular remodeling. In conclusion, these findings demonstrate that FTY720 could successfully sensitize ccRCC to chemotherapy and establish this molecule as a potent therapeutic agent for ccRCC treatment, independently of drug scheduling. Mol Cancer Ther; 15(10); 2465-74. ©2016 AACR.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Disease Models, Animal
- Drug Resistance, Neoplasm
- Female
- Fingolimod Hydrochloride/pharmacology
- Gene Expression
- Humans
- Hypoxia/genetics
- Hypoxia/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Lysophospholipids
- Mice
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Oxygen Consumption
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- Receptors, Lysosphingolipid/metabolism
- Signal Transduction/drug effects
- Sphingosine/analogs & derivatives
- Vascular Endothelial Growth Factor A/biosynthesis
- Vascular Remodeling/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Cécile Gstalder
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France. Université de Toulouse, UPS, Toulouse, France. Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Isabelle Ader
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France. Université de Toulouse, UPS, Toulouse, France. Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Olivier Cuvillier
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France. Université de Toulouse, UPS, Toulouse, France. Equipe Labellisée Ligue contre le Cancer, Paris, France.
| |
Collapse
|
38
|
Xiao-Fen W, Ting C, Jie L, Deng-Yang M, Qing-Feng Z, Xin L. Correlation analysis of VHL and Jade-1 gene expression in human renal cell carcinoma. Open Med (Wars) 2016; 11:226-230. [PMID: 28352799 PMCID: PMC5329830 DOI: 10.1515/med-2016-0043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/19/2016] [Indexed: 01/07/2023] Open
Abstract
Objective The aim of this study was to investigate the correlation of von Hippel-Lindau tumor suppressor (VHL) mRNA expression and jade family PHD finger 1 (Jade-1) gene expression in patients with renal cell carcinoma (RCC). Another aim of this study was to analyze the relationship of these two genes with clinicalpathological features of the RCC patients. Methods A total of 75 RCC patients who received surgically therapy in our hospital were included. All patients had complete pathological data. The expression of VHL/Jade-1 was determined by real-time polymerase chain reaction (RT-PCR). Results VHL and Jade-1 were both obviously downregulated in RCC tissues than that of the matched normal tissues, and both negatively correlated with tumor size as well as tumor grade. And we found a fine association of VHL gene expression with Jade-1. Conclusion VHL/Jade-1 exhibited significantly decreased expression in RCC tissues and was closely related to the clinical prognosis of patients. The finding of VHL expression positively correlated with Jade-1 expression shed light and provided crucial evidence on the connection of VHL protein with Wnt/b-catenin pathway.
Collapse
Affiliation(s)
- Wu Xiao-Fen
- Department of Urology Surgery, The Central Hospital of Lishui City, Lishui, 323000, People's Republic of China
| | - Chen Ting
- Department of Urology Surgery, The Central Hospital of Lishui City, Lishui, 323000, People's Republic of China
| | - Li Jie
- Department of Urology Surgery, The Central Hospital of Lishui City, Lishui, 323000, People's Republic of China
| | - Ma Deng-Yang
- Department of Urology Surgery, The Central Hospital of Lishui City, Lishui, 323000, People's Republic of China
| | - Zhu Qing-Feng
- Department of Urology Surgery, The Central Hospital of Lishui City, Lishui, 323000, People's Republic of China
| | - Lian Xin
- Department of Urology Surgery, The Central Hospital of Lishui City, Lishui, 323000, People's Republic of China
| |
Collapse
|
39
|
Hainsworth JD, Reeves JA, Mace JR, Crane EJ, Hamid O, Stille JR, Flynt A, Roberson S, Polzer J, Arrowsmith ER. A Randomized, Open-Label Phase 2 Study of the CXCR4 Inhibitor LY2510924 in Combination with Sunitinib Versus Sunitinib Alone in Patients with Metastatic Renal Cell Carcinoma (RCC). Target Oncol 2016; 11:643-653. [DOI: 10.1007/s11523-016-0434-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Miyazaki K, Sato S, Kodama T, Kurishima K, Satoh H, Hizawa N. Mediastinal lymph node metastasis of renal cell carcinoma: A case report. Oncol Lett 2016; 11:1600-1602. [PMID: 26893788 DOI: 10.3892/ol.2016.4090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 12/11/2015] [Indexed: 12/18/2022] Open
Abstract
Renal cell carcinoma (RCC) may metastasize to mediastinal lymph nodes without any abdominal lymph node involvement. The present study describes an autopsy-proven case of RCC presenting with a large mediastinal mass; the case had been previously misdiagnosed as small cell lung carcinoma due to imaging analysis results, an elevated serum level of neuron-specific enolase and the presence of small atypical cells with a high nuclear/cytoplasmic ratio. Despite RCC occurrence being rare, it should be considered in the differential diagnosis, particularly when a mass located in the kidneys presents with metastases to the mediastinal lymph nodes, even if there is no involvement of the abdominal lymph nodes and the primary lesion is of a small size.
Collapse
Affiliation(s)
- Kunihiko Miyazaki
- Division of Respiratory Medicine, Ryugasaki Saiseikai Hospital, Ryugasaki, Ibaraki 301-0854, Japan
| | - Shinya Sato
- Division of Respiratory Medicine, Ryugasaki Saiseikai Hospital, Ryugasaki, Ibaraki 301-0854, Japan
| | - Takahide Kodama
- Division of Respiratory Medicine, Ryugasaki Saiseikai Hospital, Ryugasaki, Ibaraki 301-0854, Japan
| | - Koichi Kurishima
- Division of Respiratory Medicine, Tsukuba Medical Center Hospital, Tsukuba, Ibaraki 305-8558, Japan
| | - Hiroaki Satoh
- Division of Respiratory Medicine, Mito Medical Center, University of Tsukuba, Mito, Ibaraki 310-0015, Japan
| | - Nobuyuki Hizawa
- Division of Respiratory Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|