1
|
Teixeira MM, Dias J, André T, Joaquim A, Fernandes R, Magalhães J, Marreiros L, Pinto L, Ribeiro L, Nogueira M, Morais C. Real-World Healthcare Resource Use Associated with Recurrent or Metastatic Head and Neck Cancer Patients Care in Portugal-TRACE Study. Curr Oncol 2024; 31:4270-4283. [PMID: 39195301 PMCID: PMC11352379 DOI: 10.3390/curroncol31080318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Recurrent or metastatic head and neck squamous cell carcinoma (R/M HNSCC) is a challenging disease, requiring personalized management by a multidisciplinary team. The aim of this retrospective multicentric study was to characterize real-world healthcare resource use and patient care for R/M HNSCC in Portugal during the first year after diagnosis. A total of 377 patients ineligible for curative treatment were included, mostly male (92.8%), aged 50-69 years (74.5%), with heavy alcohol (72.7%) or smoking habits (89.3%). Oropharynx (33.2%) and oral cavity (28.7%) were primary tumor locations, with lung metastases being the most common (61.4%). Eligible patients for systemic treatment with palliative intent (80.6%) received up to four treatment lines, with varied regimens. Platinum-based combination chemotherapy dominated first-line treatment (>70%), while single-agent chemotherapy and anti-PD1 immunotherapy were prevalent in later lines. Treatment approaches were uniform across disease stages and primary tumor locations but varied geographically. Treated patients received more multidisciplinary support than those who were ineligible. This study provides the first Portuguese real-world description of R/M HNSCC patient characteristics, treatment patterns, and supportive care during the year after diagnosis, highlighting population heterogeneity and aiming to improve patient management.
Collapse
Affiliation(s)
| | - João Dias
- Instituto Português de Oncologia do Porto Francisco Gentil, 4200-072 Porto, Portugal
| | - Teresa André
- Hospital Dr. Nélio Mendonça, 9000-177 Funchal, Portugal
| | - Ana Joaquim
- Unidade Local de Saúde de Gaia/Espinho, 4434-502 Vila Nova de Gaia, Portugal
| | | | | | - Laura Marreiros
- Unidade Local de Saúde de Almada-Seixal, 2805-267 Almada, Portugal
| | - Leonor Pinto
- Unidade Local de Saúde de Coimbra, 3004-561 Coimbra, Portugal
| | - Leonor Ribeiro
- Unidade Local de Saúde de Santa Maria, 1649-035 Lisbon, Portugal
| | | | | |
Collapse
|
2
|
Qiu Y, Qi Z, Wang Z, Cao Y, Lu L, Zhang H, Mathes D, Pomfret EA, Lu SL, Wang Z. EGF‑IL2 bispecific and bivalent EGF fusion toxin efficacy against syngeneic head and neck cancer mouse models. Oncol Rep 2022; 49:37. [PMID: 36579667 PMCID: PMC9827275 DOI: 10.3892/or.2022.8474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/01/2022] [Indexed: 12/28/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) remains one of the best molecules for developing targeted therapy for multiple human malignancies, including head and neck squamous cell carcinoma (HNSCC). Small molecule inhibitors or antibodies targeting EGFR have been extensively developed in recent decades. Immunotoxin (IT)‑based therapy, which combines cell surface binding ligands or antibodies with a peptide toxin, represents another cancer treatment option. A total of 3 diphtheria toxin (DT)‑based fusion toxins that target human EGFR‑monovalent EGFR IT (mono‑EGF‑IT), bivalent EGFR IT (bi‑EGF‑IT), and a bispecific IT targeting both EGFR and interleukin‑2 receptor (bis‑EGF/IL2‑IT) were recently generated by the authors. Improved efficacy and reduced toxicity of bi‑EGF‑IT compared with mono‑EGF‑IT in immunocompromised HNSCC mouse models was reported. In the present study, bis‑EGF/IL2‑IT were generated using a unique DT‑resistant yeast expression system and evaluated the in vitro and in vivo efficacy and toxicity of the 3 EGF‑ITs in immunocompetent mice. The results demonstrated that while the three EGF‑ITs had different efficacies in vitro and in vivo against HNSCC, bi‑EGF‑IT and bis‑EGF/IL2‑IT had significantly improved in vivo efficacy and remarkably less off‑target toxicity compared with mono‑EGF‑IT. In addition, bis‑EGF/IL2‑IT was superior to bi‑EGF‑IT in reducing tumor size and prolonging survival in the metastatic model. These data suggested that targeting either the tumor immune microenvironment or enhancing the binding affinity could improve the efficacy of IT‑based therapy. Bi‑EGF‑IT and bis‑EGF/IL2‑IT represent improved candidates for IT‑based therapy for future clinical development.
Collapse
Affiliation(s)
- Yue Qiu
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA,Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Zeng Qi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA,Division of Transplant Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zhaohui Wang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA,Division of Transplant Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yu Cao
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA,Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ling Lu
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Huiping Zhang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA,Division of Transplant Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David Mathes
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Elizabeth A. Pomfret
- Division of Transplant Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Shi-Long Lu
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA,Dr Shi-Long Lu, Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19th Avenue Aurora, CO 80045, USA, E-mail:
| | - Zhirui Wang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA,Division of Transplant Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA,Correspondence to: Dr Zhirui Wang, Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19th Avenue, Aurora, CO 80045, USA, E-mail:
| |
Collapse
|
3
|
Kaempferol Induces Cell Death and Sensitizes Human Head and Neck Squamous Cell Carcinoma Cell Lines to Cisplatin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33368015 DOI: 10.1007/5584_2020_603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Cisplatin is a first-line chemotherapeutic drug commonly used to treat patients with head and neck cancer; nevertheless, cisplatin resistance poses a main challenge for its clinical efficacy. Recent studies have shown that kaempferol, a natural flavonoid found in various plants and foods, has an anticancer effect. The following study evaluated the cytotoxic effects of kaempferol on head and neck tumor cells and their mechanism of action, evaluating the effects on proliferation, the oxygen consumption rate, transmembrane potential, tumor cell migration and induction of apoptosis. Moreover, we determined the effects of a combination of kaempferol and cisplatin on head and neck tumor cells. We found that kaempferol inhibited the oxygen consumption rate and decreased the intracellular ATP content in tumor cells. This novel mechanism may inhibit the migratory capacity and promote antiproliferative effects and apoptosis of tumor cells. Additionally, our in vitro data indicated that kaempferol may sensitize head and neck tumor cells to the effects of cisplatin. These effects provide new evidence for the use of a combination of kaempferol and cisplatin in vivo and their future applications in head and neck cancer therapy.
Collapse
|
4
|
Qi Z, Qiu Y, Wang Z, Zhang H, Lu L, Liu Y, Mathes D, Pomfret EA, Gao D, Lu SL, Wang Z. A novel diphtheria toxin-based bivalent human EGF fusion toxin for treatment of head and neck squamous cell carcinoma. Mol Oncol 2021; 15:1054-1068. [PMID: 33540470 PMCID: PMC8024719 DOI: 10.1002/1878-0261.12919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is often overexpressed in head and neck squamous cell carcinoma (HNSCC) and represents a top candidate for targeted HNSCC therapy. However, the clinical effectiveness of current Food and Drug Administration (FDA)-approved drugs targeting EGFR is moderate, and the overall survival rate for HNSCC patients remains low. Therefore, more effective treatments are urgently needed. In this study, we generated a novel diphtheria toxin-based bivalent human epidermal growth factor fusion toxin (bi-EGF-IT) to treat EGFR-expressing HNSCC. Bi-EGF-IT was tested for in vitro binding affinity, cytotoxicity, and specificity using 14 human EGFR-expressing HNSCC cell lines and three human EGFR-negative cancer cell lines. Bi-EGF-IT had increased binding affinity for EGFR-expressing HNSCC compared with the monovalent version (mono-EGF-IT), and both versions specifically depleted EGFR-positive HNSCC, but not EGFR-negative cell lines, in vitro. Bi-EGF-IT exhibited a comparable potency to that of the FDA-approved EGFR inhibitor, erlotinib, for inhibiting HNSCC tumor growth in vivo using both subcutaneous and orthotopic HNSCC xenograft mouse models. When tested in an experimental metastasis model, survival was significantly longer in the bi-EGF-IT treatment group than the erlotinib treatment group, with a significantly reduced number of metastases compared with mono-EGF-IT. In addition, in vivo off-target toxicities were significantly reduced in the bi-EGF-IT treatment group compared with the mono-EGF-IT group. These results demonstrate that bi-EGF-IT is more effective and markedly less toxic at inhibiting primary HNSCC tumor growth and metastasis than mono-EGF-IT and erlotinib. Thus, the novel bi-EGF-IT is a promising drug candidate for further development.
Collapse
Affiliation(s)
- Zeng Qi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Division of Transplant Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yue Qiu
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Zhaohui Wang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Division of Transplant Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Huiping Zhang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Division of Transplant Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ling Lu
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yanqiu Liu
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David Mathes
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elizabeth A Pomfret
- Division of Transplant Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dexiang Gao
- Department of Biostatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shi-Long Lu
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Zhirui Wang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Division of Transplant Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
5
|
SAHA Overcomes 5-FU Resistance in IFIT2-Depleted Oral Squamous Cell Carcinoma Cells. Cancers (Basel) 2020; 12:cancers12123527. [PMID: 33256074 PMCID: PMC7761248 DOI: 10.3390/cancers12123527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/23/2022] Open
Abstract
Simple Summary IFIT2 depletion is associated with increased epithelial-mesenchymal transition and metastasis. The main aim of our study was to understand the link between drug resistance and IFIT2 depletion. In this study, we confirmed resistance to multiple common therapeutic drugs, particularly 5-FU, which showed especially high resistance in IFIT2-depleted cells. Interestingly, combination of SAHA and 5-FU overcame 5-FU resistance in IFIT2-depleted cells. Hence, our findings suggest that IFIT2 expression may be used as a biomarker to decide whether to undergo 5-FU treatment, but also the SAHA and 5-FU combination may be a potential new treatment regimen to augment 5-FU therapy in patients with thymidylate synthase-mediated drug-resistant oral squamous cell carcinoma. Abstract Interferon-induced protein with tetratricopeptide repeats 2 (IFIT2) is a member of the interferon-stimulated gene family that contains tetratricopeptide repeats (TPRs), which mediate protein–protein interactions in various biological systems. We previously showed the depletion of IFIT2 enhanced cell migration and metastatic activity in oral squamous cell carcinoma (OSCC) cells via the activation of atypical PKC signaling. In this study, we found that IFIT2-knockdown cells displayed higher resistance to 5-fluorouracil (5-FU) than control cells. The comet assay and annexin V analysis showed decreased DNA damage and cell death in IFIT2-knockdown cells compared to control cells treated with 5-FU. Cell cycle progression was also perturbed by 5-FU treatment, with the accumulation of IFIT2-depleted cells in S phase in a time-dependent manner. We further observed the overexpression of thymidylate synthase (TS) and thymidine kinase (TK) in IFIT2-knockdown cells. Inhibition of TS alone or double inhibition of TS and TK1 using the siRNA technique increased susceptibility to 5-FU in IFIT2-knockdown cells. We further identified that suberanilohydroxamic acid (SAHA) treatment decreased the expression of TS in IFIT2-knockdown cells and demonstrated that pretreatment with SAHA sensitized IFIT2-knockdown cells to 5-FU in vitro and in vivo. In conclusion, IFIT2 knockdown enhances TS expression, which mediates 5-FU resistance, and SAHA pretreatment suppresses TS expression and hence sensitizes cells to 5-FU. SAHA will be an effective strategy for the treatment of OSCC patients with 5-FU resistance.
Collapse
|
6
|
Travis Caton M, Miskin N, Guenette JP. The role of computed tomography angiography as initial imaging tool for acute hemorrhage in the head and neck. Emerg Radiol 2020; 28:215-221. [PMID: 32754845 DOI: 10.1007/s10140-020-01835-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/30/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Acute hemorrhage in the head and neck (AHNH) is life-threatening due to asphyxiation and hemorrhagic shock. When conservative measures fail, some patients benefit from endovascular therapy (EVT). While CTA is routinely used to localize bleeding and plan EVT in gastrointestinal hemorrhage, the diagnostic value of CTA in AHNH and role of CTA in treatment-planning are uncertain. METHODS We retrospectively reviewed neck CTAs from June 2015 to October 2018 indicated for AHNH. When performed, digital subtraction angiography (DSA) findings and EVT were documented. Extravasation or pseudoaneurysm on DSA was considered positive for bleed localization. RESULTS Thirty CTA exams were performed for AHNH in 18 patients (mean age = 56.6, male% = 55.6%). Eleven out of 30 exams (36.7%) had immediate DSA follow-up within 24 h. Etiologies of hemorrhage included malignancy 11/18 (61.1%) and coagulopathy (4/18, 22.2%) among others. CTA reports identified definite or possible source of bleeding in 7/30 (23.3%) exams. Seven out of 7 (100%) patients with definite or possible source of bleeding on CTA underwent DSA and 4/23 (17.4%) patients underwent DSA despite negative CTA. With DSA as the gold standard, CTA had a sensitivity of 70% and a specificity of 100%. CONCLUSIONS CTA has high specificity and reasonable sensitivity for detecting arterial source of bleeding in patients presenting with AHNH. Patients with negative CTA may avoid catheter angiography in most cases; however, false-negative CTA should not preclude angiography in high-risk patients.
Collapse
Affiliation(s)
- M Travis Caton
- Brigham and Women's Hospital/Harvard Medical School, Boston, MA, USA. .,University of California, San Francisco, San Francisco, CA, USA.
| | - Nityanand Miskin
- Brigham and Women's Hospital/Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
7
|
Potential oncogenic roles of mutant-p53-derived exosomes in the tumor-host interaction of head and neck cancers. Cancer Immunol Immunother 2020; 69:285-292. [PMID: 31897662 DOI: 10.1007/s00262-019-02450-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/02/2019] [Indexed: 02/08/2023]
Abstract
The wide-ranging collection of malignancies arising at the upper aerodigestive tract is categorized as head and neck cancer (HNC), the sixth most prevalent cancer worldwide. Infection with human papillomavirus (HPV) or exposure to carcinogens is the leading causes of HPV+ and HPV- HNCs development, respectively. HPV+ and HPV- HNCs are different in clinical and molecular aspects. Specifically, HPV- HNCs tightly associate with missense mutants of the TP53 gene (encoding for the p53 protein), suggesting a central role for mutant p53 gain-of-function (GOF) in driving tumorigenesis. In contrast, in HPV + HNC, the sequence of TP53 typically remains intact, while the protein is degraded. In tumor cells, the status of the TP53 gene affects the cargo of secreted exosomes. In this review, we describe the accumulated knowledge regarding the involvement of exosomes and p53 on cellular interactions between HPV+ and HPV- HNC cells, and the surrounding tumor microenvironment (TME). Moreover, we envision how TP53 status may determine exosomes cargo in HNC, and, consequently, modify the TME. The potential roles of exosomes described herein are based on both our studies and the studies of others on mutant p53-derived exosomes. Specifically, we showed how exosomes are shed by cancer cells harboring mutant p53 communicate with tumor-associated macrophages in the colon as well as with cancer-associated fibroblasts in the lung, creating immunosuppressive conditions and promoting invasiveness. Altogether, exosomes in HNC in the context of TP53 status are understudied and extensive research is required to shed light on the biology of HPV+ and HPV- HNC.
Collapse
|
8
|
Napolitano M, Schipilliti FM, Trudu L, Bertolini F. Immunotherapy in head and neck cancer: The great challenge of patient selection. Crit Rev Oncol Hematol 2019; 144:102829. [PMID: 31739116 DOI: 10.1016/j.critrevonc.2019.102829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022] Open
Abstract
The development of immune checkpoint inhibitors (ICIs) revolutionized the therapeutic landscape in head and neck cancer. However, the majority of patients present primary resistance to ICIs and do not benefit from use of these agents, highlighting the need of developing predictive biomarkers to better determine who will benefit from treatment with ICIs. Patient's related clinical characteristics, disease related features, pathological and molecular factors, as well as emerging immune predictive biomarkers can be considered for the selection of those patients who would be the best candidate for immunotherapy. We examined these factors, emerging from the results of currently available studies in head and neck squamous cell carcinoma (HNSCC), in order to provide a useful tool which could assist the oncologist in their clinical practice.
Collapse
Affiliation(s)
- Martina Napolitano
- Department of Oncology and Hematology, University Hospital of Modena, Via del Pozzo 71, 41124 Modena, Italy.
| | | | - Lucia Trudu
- Department of Oncology and Hematology, University Hospital of Modena, Via del Pozzo 71, 41124 Modena, Italy
| | - Federica Bertolini
- Department of Oncology and Hematology, University Hospital of Modena, Via del Pozzo 71, 41124 Modena, Italy
| |
Collapse
|