1
|
Montandon S, Jefferson-Loveday C, Sommerlad M, Patel HP. Giant Primary Cutaneous Nodular Melanoma of the Forehead: A Case Report. Geriatrics (Basel) 2024; 9:164. [PMID: 39727823 DOI: 10.3390/geriatrics9060164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Background: The incidence of melanoma is increasing globally. The estimated worldwide incidence is projected to increase from 324,635 cases in 2020 to 510,000 in 2040. In the UK, melanoma accounts for 4% of all new cases of cancer. Melanomas occurring in the skin of the head and neck represent 13% and 23% of cases in women and men, respectively. Prognostic indicators include presence of nodal or distant metastasis, ulceration, and Breslow thickness, where >4 mm thickness predicts poorest overall survival rates. Giant melanomas, a term generally applied to melanomas larger than 5-10 cm, are rare and often have a very poor prognosis. Clinical case: An 82-year-old female presented acutely with a 2-3-day history of delirium and urinary retention in February 2022. In addition, she was noted to have a large fungating growth on her forehead that obscured the bridge of the nose and had been slowly increasing in size for the past year prior to admission. She had initially presented in primary care with a small growth on her forehead but declined further investigations for fear of contracting COVID-19. She consented to having further assessment and management of the forehead mass. A shave biopsy revealed giant nodular melanoma, specifically, the largest melanoma of the face reported in the literature. Remarkably, our patient underwent a successful complete excision and skin grafting, with no evidence of recurrence or distal metastasis after 2 years of follow up. Conclusions: This case highlights the anxieties people felt about contracting COVID-19 when national guidelines recommended shielding that had resulted in further morbidity. Despite poor prognostic factors, clinically and histologically, our patient did not need any systemic anticancer therapy nor radiotherapy. She was well after 2 years follow up without any signs of recurrence.
Collapse
Affiliation(s)
- Samantha Montandon
- Medicine for Older People, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK
| | | | - Matthew Sommerlad
- Department of Histopathology, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK
| | - Harnish P Patel
- Medicine for Older People, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton, Southampton SO16 6YD, UK
- Academic Geriatric Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
2
|
Aubé F, Fontrodona N, Guiguettaz L, Vallin E, Fabbri L, Lapendry A, Vagner S, Ricci EP, Auboeuf D. Metabolism-dependent secondary effect of anti-MAPK cancer therapy on DNA repair. NAR Cancer 2024; 6:zcae019. [PMID: 38690580 PMCID: PMC11059277 DOI: 10.1093/narcan/zcae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/08/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024] Open
Abstract
Amino acid bioavailability impacts mRNA translation in a codon-dependent manner. Here, we report that the anti-cancer MAPK inhibitors (MAPKi) decrease the intracellular concentration of aspartate and glutamate in melanoma cells. This coincides with the accumulation of ribosomes on codons corresponding to these amino acids and triggers the translation-dependent degradation of mRNAs encoding aspartate- and glutamate-rich proteins, involved in DNA metabolism such as DNA replication and repair. Consequently, cells that survive MAPKi degrade aspartate and glutamate likely to generate energy, which simultaneously decreases their requirement for amino acids due to the downregulation of aspartate- and glutamate-rich proteins involved in cell proliferation. Concomitantly, the downregulation of aspartate- and glutamate-rich proteins involved in DNA repair increases DNA damage loads. Thus, DNA repair defects, and therefore mutations, are at least in part a secondary effect of the metabolic adaptation of cells exposed to MAPKi.
Collapse
Affiliation(s)
- Fabien Aubé
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, LBMC, ENS, Lyon, France
| | - Nicolas Fontrodona
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, LBMC, ENS, Lyon, France
| | - Laura Guiguettaz
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
| | - Elodie Vallin
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
| | - Lucilla Fabbri
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Orsay, France
- Université Paris-Saclay, CNRS UMR 3348, INSERM U1278, Orsay, France
- Equipe labellisée Ligue contre le Cancer, Orsay, France
| | - Audrey Lapendry
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, LBMC, ENS, Lyon, France
| | - Stephan Vagner
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Orsay, France
- Université Paris-Saclay, CNRS UMR 3348, INSERM U1278, Orsay, France
- Equipe labellisée Ligue contre le Cancer, Orsay, France
| | - Emiliano P Ricci
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
| | - Didier Auboeuf
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, 46 allée d’Italie F-69364 Lyon, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, LBMC, ENS, Lyon, France
| |
Collapse
|
3
|
Fateeva A, Eddy K, Chen S. Current State of Melanoma Therapy and Next Steps: Battling Therapeutic Resistance. Cancers (Basel) 2024; 16:1571. [PMID: 38672652 PMCID: PMC11049326 DOI: 10.3390/cancers16081571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Melanoma is the most aggressive and deadly form of skin cancer due to its high propensity to metastasize to distant organs. Significant progress has been made in the last few decades in melanoma therapeutics, most notably in targeted therapy and immunotherapy. These approaches have greatly improved treatment response outcomes; however, they remain limited in their abilities to hinder disease progression due, in part, to the onset of acquired resistance. In parallel, intrinsic resistance to therapy remains an issue to be resolved. In this review, we summarize currently available therapeutic options for melanoma treatment and focus on possible mechanisms that drive therapeutic resistance. A better understanding of therapy resistance will provide improved rational strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Anna Fateeva
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
| | - Kevinn Eddy
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- U.S. Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ 07018, USA
| |
Collapse
|
4
|
Castellani G, Buccarelli M, Arasi MB, Rossi S, Pisanu ME, Bellenghi M, Lintas C, Tabolacci C. BRAF Mutations in Melanoma: Biological Aspects, Therapeutic Implications, and Circulating Biomarkers. Cancers (Basel) 2023; 15:4026. [PMID: 37627054 PMCID: PMC10452867 DOI: 10.3390/cancers15164026] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Melanoma is an aggressive form of skin cancer resulting from the malignant transformation of melanocytes. Recent therapeutic approaches, including targeted therapy and immunotherapy, have improved the prognosis and outcome of melanoma patients. BRAF is one of the most frequently mutated oncogenes recognised in melanoma. The most frequent oncogenic BRAF mutations consist of a single point mutation at codon 600 (mostly V600E) that leads to constitutive activation of the BRAF/MEK/ERK (MAPK) signalling pathway. Therefore, mutated BRAF has become a useful target for molecular therapy and the use of BRAF kinase inhibitors has shown promising results. However, several resistance mechanisms invariably develop leading to therapeutic failure. The aim of this manuscript is to review the role of BRAF mutational status in the pathogenesis of melanoma and its impact on differentiation and inflammation. Moreover, this review focuses on the mechanisms responsible for resistance to targeted therapies in BRAF-mutated melanoma and provides an overview of circulating biomarkers including circulating tumour cells, circulating tumour DNA, and non-coding RNAs.
Collapse
Affiliation(s)
- Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Beatrice Arasi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| | - Maria Elena Pisanu
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Maria Bellenghi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.B.); (M.B.A.); (S.R.)
| |
Collapse
|
5
|
Penas C, Arroyo-Berdugo Y, Apraiz A, Rasero J, Muñoa-Hoyos I, Andollo N, Cancho-Galán G, Izu R, Gardeazabal J, Ezkurra PA, Subiran N, Alvarez-Dominguez C, Alonso S, Bosserhoff AK, Asumendi A, Boyano MD. Pirin is a prognostic marker of human melanoma that dampens the proliferation of malignant cells by downregulating JARID1B/KDM5B expression. Sci Rep 2023; 13:9561. [PMID: 37308689 DOI: 10.1038/s41598-023-36684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/08/2023] [Indexed: 06/14/2023] Open
Abstract
Originally considered to act as a transcriptional co-factor, Pirin has recently been reported to play a role in tumorigenesis and the malignant progression of many tumors. Here, we have analyzed the diagnostic and prognostic value of Pirin expression in the early stages of melanoma, and its role in the biology of melanocytic cells. Pirin expression was analyzed in a total of 314 melanoma biopsies, correlating this feature with the patient's clinical course. Moreover, PIR downregulated primary melanocytes were analyzed by RNA sequencing, and the data obtained were validated in human melanoma cell lines overexpressing PIR by functional assays. The immunohistochemistry multivariate analysis revealed that early melanomas with stronger Pirin expression were more than twice as likely to develop metastases during the follow-up. Transcriptome analysis of PIR downregulated melanocytes showed a dampening of genes involved in the G1/S transition, cell proliferation, and cell migration. In addition, an in silico approach predicted that JARID1B as a potential transcriptional regulator that lies between PIR and its downstream modulated genes, which was corroborated by co-transfection experiments and functional analysis. Together, the data obtained indicated that Pirin could be a useful marker for the metastatic progression of melanoma and that it participates in the proliferation of melanoma cells by regulating the slow-cycling JARID1B gene.
Collapse
Affiliation(s)
- Cristina Penas
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Yoana Arroyo-Berdugo
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Aintzane Apraiz
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | - Javier Rasero
- Department of Psychology, Carnegie Mellon University, Pittsburg, PA, 15213, USA
| | - Iraia Muñoa-Hoyos
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Noelia Andollo
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | | | - Rosa Izu
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Dermatology, Basurto University Hospital, 48013, Bilbo, Spain
| | - Jesús Gardeazabal
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Dermatology, Cruces University Hospital, 48903, Barakaldo, Spain
| | - Pilar A Ezkurra
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Nerea Subiran
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Carmen Alvarez-Dominguez
- MEDONLINE Multidisciplinary Research Group, Faculty of Health Sciences and Faculty of Education, International University of La Rioja, 26006, Logroño, Spain
| | - Santos Alonso
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940, Leioa, Spain
| | - Anja K Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, 91054, Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054, Erlangen, Germany
| | - Aintzane Asumendi
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | - María D Boyano
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain.
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain.
| |
Collapse
|
6
|
Bialves TS, Bastos Junior CLQ, Cordeiro MF, Boyle RT. Snake venom, a potential treatment for melanoma. A systematic review. Int J Biol Macromol 2023; 231:123367. [PMID: 36690229 DOI: 10.1016/j.ijbiomac.2023.123367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Despite advances in treating patients with melanoma, there are still many treatment challenges to overcome. Studies with snake venom-derived proteins/peptides describe their binding potential, and inhibition of some proliferative mechanisms in melanoma. The combined use of these compounds with current therapies could be the strategic gap that will help us discover more effective treatments for melanoma. The present study aimed to carry out a systematic review identifying snake venom proteins and peptides described in the literature with antitumor, antimetastatic, or antiangiogenic effects on melanoma and determine the mechanisms of action that lead to these anti-tumor effects. Snake venoms contain proteins and peptides which are antiaggregant, antimetastatic, and antiangiogenic. The in vivo results are encouraging, considering the reduction of metastases and tumor size after treatment. In addition to these results, it was reported that these venom compounds could act in combination with chemotherapeutics (Acurhagin-C; Macrovipecetin), sensitizing and preparing tumor cells for treatment. There is a consensus that snake venom is a promising strategy for the improvement of antimelanoma therapies, but it has been little explored in the current context, combined with inhibitors, immunotherapy or tumor microenvironment, for example. We suggest Lebein as a candidate for combination therapy with BRAF inhibitors.
Collapse
Affiliation(s)
- Tatiane Senna Bialves
- Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF), Universidade Federal do Rio Grande - FURG, Av. Itália, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil.
| | - Claudio L Q Bastos Junior
- Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF), Universidade Federal do Rio Grande - FURG, Av. Itália, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil
| | - Marcos Freitas Cordeiro
- Programa de Pós-Graduação em Biociências e Saúde (PPGBS), Universidade do Oeste de Santa Catarina - UNOESC, Rua Roberto Trompovski 224, Joaçaba, Santa Catarina, CEP 89600-000, Brazil.
| | - Robert Tew Boyle
- Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF), Universidade Federal do Rio Grande - FURG, Av. Itália, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul 96203-900, Brazil
| |
Collapse
|
7
|
Zheng P, Zhou C, Lu L, Liu B, Ding Y. Elesclomol: a copper ionophore targeting mitochondrial metabolism for cancer therapy. J Exp Clin Cancer Res 2022; 41:271. [PMID: 36089608 PMCID: PMC9465867 DOI: 10.1186/s13046-022-02485-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/02/2022] [Indexed: 01/06/2023] Open
Abstract
Elesclomol is an anticancer drug that targets mitochondrial metabolism. In the past, elesclomol was recognized as an inducer of oxidative stress, but now it has also been found to suppress cancer by inducing cuproptosis. Elesclomol’s anticancer activity is determined by the dependence of cancer on mitochondrial metabolism. The mitochondrial metabolism of cancer stem cells, cancer cells resistant to platinum drugs, proteasome inhibitors, molecularly targeted drugs, and cancer cells with inhibited glycolysis was significantly enhanced. Elesclomol exhibited tremendous toxicity to all three kinds of cells. Elesclomol's toxicity to cells is highly dependent on its transport of extracellular copper ions, a process involved in cuproptosis. The discovery of cuproptosis has perfected the specific cancer suppressor mechanism of elesclomol. For some time, elesclomol failed to yield favorable results in oncology clinical trials, but its safety in clinical application was confirmed. Research progress on the relationship between elesclomol, mitochondrial metabolism and cuproptosis provides a possibility to explore the reapplication of elesclomol in the clinic. New clinical trials should selectively target cancer types with high mitochondrial metabolism and attempt to combine elesclomol with platinum, proteasome inhibitors, molecularly targeted drugs, or glycolysis inhibitors. Herein, the particular anticancer mechanism of elesclomol and its relationship with mitochondrial metabolism and cuproptosis will be presented, which may shed light on the better application of elesclomol in clinical tumor treatment.
Collapse
|
8
|
NAD/NAMPT and mTOR Pathways in Melanoma: Drivers of Drug Resistance and Prospective Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23179985. [PMID: 36077374 PMCID: PMC9456568 DOI: 10.3390/ijms23179985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant melanoma represents the most fatal skin cancer due to its aggressive behavior and high metastatic potential. The introduction of BRAF/MEK inhibitors and immune-checkpoint inhibitors (ICIs) in the clinic has dramatically improved patient survival over the last decade. However, many patients either display primary (i.e., innate) or develop secondary (i.e., acquired) resistance to systemic treatments. Therapeutic resistance relies on the rewiring of multiple processes, including cancer metabolism, epigenetics, gene expression, and interactions with the tumor microenvironment that are only partially understood. Therefore, reliable biomarkers of resistance or response, capable of facilitating the choice of the best treatment option for each patient, are currently missing. Recently, activation of nicotinamide adenine dinucleotide (NAD) metabolism and, in particular, of its rate-limiting enzyme nicotinamide phosphoribosyltransferase (NAMPT) have been identified as key drivers of targeted therapy resistance and melanoma progression. Another major player in this context is the mammalian target of rapamycin (mTOR) pathway, which plays key roles in the regulation of melanoma cell anabolic functions and energy metabolism at the switch between sensitivity and resistance to targeted therapy. In this review, we summarize known resistance mechanisms to ICIs and targeted therapy, focusing on metabolic adaptation as one main mechanism of drug resistance. In particular, we highlight the roles of NAD/NAMPT and mTOR signaling axes in this context and overview data in support of their inhibition as a promising strategy to overcome treatment resistance.
Collapse
|
9
|
Zhou Y, Shu Q, Fu Z, Wang C, Gu J, Li J, Chen Y, Xie M. A novel risk model based on cuproptosis-related lncRNAs predicted prognosis and indicated immune microenvironment landscape of patients with cutaneous melanoma. Front Genet 2022; 13:959456. [PMID: 35938036 PMCID: PMC9354044 DOI: 10.3389/fgene.2022.959456] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Cutaneous melanoma (CM) is an aggressive form of malignancy with poor prognostic value. Cuproptosis is a novel type of cell death regulatory mechanism in tumors. However, the role of cuproptosis-related long noncoding RNAs (lncRNAs) in CM remains elusive. The cuproptosis-related lncRNAs were identified using the Pearson correlation algorithm. Through the univariate and multivariate Cox regression analysis, the prognosis of seven lncRNAs associated with cuproptosis was established and a new risk model was constructed. ESTIMATE, CIBERSORT, and single sample gene set enrichment analyses (ssGSEA) were applied to evaluate the immune microenvironment landscape. The Kaplan–Meier survival analysis revealed that the overall survival (OS) of CM patients in the high-risk group was remarkably lower than that of the low-risk group. The result of the validated cohort and the training cohort indicated that the risk model could produce an accurate prediction of the prognosis of CM. The nomogram result demonstrated that the risk score based on the seven prognostic cuproptosis-related lncRNAs was an independent prognostic indicator feature that distinguished it from other clinical features. The result of the immune microenvironment landscape indicated that the low-risk group showed better immunity than high-risk group. The immunophenoscore (IPS) and immune checkpoints results conveyed a better benefit potential for immunotherapy clinical application in the low-risk groups. The enrichment analysis and the gene set variation analysis (GSVA) were adopted to reveal the role of cuproptosis-related lncRNAs mediated by the immune-related signaling pathways in the development of CM. Altogether, the construction of the risk model based on cuproptosis-related lncRNAs can accurately predict the prognosis of CM and indicate the immune microenvironment of CM, providing a new perspective for the future clinical treatment of CM.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, ZG, China
| | - Qi Shu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Zailin Fu
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, ZG, China
| | - Chen Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jianrong Gu
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, ZG, China
| | - Jianbo Li
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, ZG, China
| | - Yifang Chen
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, ZG, China
- *Correspondence: Yifang Chen, ; Minghua Xie,
| | - Minghua Xie
- Department of Pharmacy, First People’s Hospital of Linping District, Hangzhou, ZG, China
- *Correspondence: Yifang Chen, ; Minghua Xie,
| |
Collapse
|
10
|
Rok J, Rzepka Z, Kowalska J, Banach K, Beberok A, Wrześniok D. The Anticancer Potential of Doxycycline and Minocycline-A Comparative Study on Amelanotic Melanoma Cell Lines. Int J Mol Sci 2022; 23:ijms23020831. [PMID: 35055021 PMCID: PMC8775630 DOI: 10.3390/ijms23020831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/02/2022] [Accepted: 01/11/2022] [Indexed: 12/04/2022] Open
Abstract
Malignant melanoma is still a serious medical problem. Relatively high mortality, a still-growing number of newly diagnosed cases, and insufficiently effective methods of therapy necessitate melanoma research. Tetracyclines are compounds with pleiotropic pharmacological properties. Previously published studies on melanotic melanoma cells ascertained that minocycline and doxycycline exerted an anti-melanoma effect. The purpose of the study was to assess the anti-melanoma potential and mechanisms of action of minocycline and doxycycline using A375 and C32 human amelanotic melanoma cell lines. The obtained results indicate that the tested drugs inhibited proliferation, decreased cell viability, and induced apoptosis in amelanotic melanoma cells. The treatment caused changes in the cell cycle profile and decreased the intracellular level of reduced thiols and mitochondrial membrane potential. The exposure of A375 and C32 cells to minocycline and doxycycline triggered the release of cytochrome c and activated initiator and effector caspases. The anti-melanoma effect of analyzed drugs appeared to be related to the up-regulation of ERK1/2 and MITF. Moreover, it was noticed that minocycline and doxycycline increased the level of LC3A/B, an autophagy marker, in A375 cells. In summary, the study showed the pleiotropic anti-cancer action of minocycline and doxycycline against amelanotic melanoma cells. Considering all results, it could be concluded that doxycycline was a more potent drug than minocycline.
Collapse
Affiliation(s)
- Jakub Rok
- Correspondence: ; Tel.: +48-32-364-15-47
| | | | | | | | | | | |
Collapse
|
11
|
Fontana F, Limonta P. The multifaceted roles of mitochondria at the crossroads of cell life and death in cancer. Free Radic Biol Med 2021; 176:203-221. [PMID: 34597798 DOI: 10.1016/j.freeradbiomed.2021.09.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022]
Abstract
Mitochondria are the cytoplasmic organelles mostly known as the "electric engine" of the cells; however, they also play pivotal roles in different biological processes, such as cell growth/apoptosis, Ca2+ and redox homeostasis, and cell stemness. In cancer cells, mitochondria undergo peculiar functional and structural dynamics involved in the survival/death fate of the cell. Cancer cells use glycolysis to support macromolecular biosynthesis and energy production ("Warburg effect"); however, mitochondrial OXPHOS has been shown to be still active during carcinogenesis and even exacerbated in drug-resistant and stem cancer cells. This metabolic rewiring is associated with mutations in genes encoding mitochondrial metabolic enzymes ("oncometabolites"), alterations of ROS production and redox biology, and a fine-tuned balance between anti-/proapoptotic proteins. In cancer cells, mitochondria also experience dynamic alterations from the structural point of view undergoing coordinated cycles of biogenesis, fusion/fission and mitophagy, and physically communicating with the endoplasmic reticulum (ER), through the Ca2+ flux, at the MAM (mitochondria-associated membranes) levels. This review addresses the peculiar mitochondrial metabolic and structural dynamics occurring in cancer cells and their role in coordinating the balance between cell survival and death. The role of mitochondrial dynamics as effective biomarkers of tumor progression and promising targets for anticancer strategies is also discussed.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milano, Italy.
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milano, Italy.
| |
Collapse
|
12
|
Yang R, Wang Z, Li J, Pi X, Gao R, Ma J, Qing Y, Zhou S. The Identification of the Metabolism Subtypes of Skin Cutaneous Melanoma Associated With the Tumor Microenvironment and the Immunotherapy. Front Cell Dev Biol 2021; 9:707677. [PMID: 34458265 PMCID: PMC8397464 DOI: 10.3389/fcell.2021.707677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/06/2021] [Indexed: 01/22/2023] Open
Abstract
Skin cutaneous melanoma (SKCM) is a highly aggressive and resistant cancer with immense metabolic heterogeneity. Here, we performed a comprehensive examination of the diverse metabolic signatures of SKCM based on non-negative matrix factorization (NMF) categorization, clustering SKCM into three distinct metabolic subtypes (C1, C2, and C3). Next, we evaluated the metadata sets of the metabolic signatures, prognostic values, transcriptomic features, tumor microenvironment signatures, immune infiltration, clinical features, drug sensitivity, and immunotherapy response of the subtypes and compared them with those of prior publications for classification. Subtype C1 was associated with high metabolic activity, low immune scores, and poor prognosis. Subtype C2 displayed low metabolic activity, high immune infiltration, high stromal score, and high expression of immune checkpoints, demonstrating the drug sensitivity to PD-1 inhibitors. The C3 subtype manifested moderate metabolic activity, high enrichment in carcinogenesis-relevant pathways, high levels of CpG island methylator phenotype (CIMP), and poor prognosis. Eventually, a 90-gene classifier was produced to implement the SKCM taxonomy and execute a consistency test in different cohorts to validate its reliability. Preliminary validation was performed to ascertain the role of SLC7A4 in SKCM. These results indicated that the 90-gene signature can be replicated to stably identify the metabolic classification of SKCM. In this study, a novel SKCM classification approach based on metabolic gene expression profiles was established to further understand the metabolic diversity of SKCM and provide guidance on precisely targeted therapy to patients with the disease.
Collapse
Affiliation(s)
- Ronghua Yang
- Department of Burn Surgery and Skin Regeneration, The First People's Hospital of Foshan, Foshan, China
| | - Zhengguang Wang
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiehua Li
- Department of Dermatology, The First People's Hospital of Foshan, Foshan, China
| | - Xiaobing Pi
- Department of Dermatology, The First People's Hospital of Foshan, Foshan, China
| | - Runxing Gao
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Qing
- Department of Oncology, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Sitong Zhou
- Department of Dermatology, The First People's Hospital of Foshan, Foshan, China
| |
Collapse
|
13
|
Metabolic Interplay between the Immune System and Melanoma Cells: Therapeutic Implications. Biomedicines 2021; 9:biomedicines9060607. [PMID: 34073463 PMCID: PMC8227307 DOI: 10.3390/biomedicines9060607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Malignant melanoma represents the most fatal skin cancer due to its aggressive biological behavior and high metastatic potential. Treatment strategies for advanced disease have dramatically changed over the last years due to the introduction of BRAF/MEK inhibitors and immunotherapy. However, many patients either display primary (i.e., innate) or eventually develop secondary (i.e., acquired) resistance to systemic treatments. Treatment resistance depends on multiple mechanisms driven by a set of rewiring processes, which involve cancer metabolism, epigenetic, gene expression, and interactions within the tumor microenvironment. Prognostic and predictive biomarkers are needed to guide patients’ selection and treatment decisions. Indeed, there are no recognized clinical or biological characteristics that identify which patients will benefit more from available treatments, but several biomarkers have been studied with promising preliminary results. In this review, we will summarize novel tumor metabolic pathways and tumor-host metabolic crosstalk mechanisms leading to melanoma progression and drug resistance, with an overview on their translational potential as novel therapeutic targets.
Collapse
|
14
|
Kocinaj A, Chaudhury T, Uddin MS, Junaid RR, Ramsden DB, Hondhamuni G, Klamt F, Parsons L, Parsons RB. High Expression of Nicotinamide N-Methyltransferase in Patients with Sporadic Alzheimer's Disease. Mol Neurobiol 2021; 58:1769-1781. [PMID: 33387303 PMCID: PMC7932959 DOI: 10.1007/s12035-020-02259-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/10/2020] [Indexed: 01/11/2023]
Abstract
We have previously shown that the expression of nicotinamide N-methyltransferase (NNMT) is significantly increased in the brains of patients who have died of Parkinson's disease (PD). In this study, we have compared the expression of NNMT in post-mortem medial temporal lobe, hippocampus and cerebellum of 10 Alzheimer's disease (AD) and 9 non-disease control subjects using a combination of quantitative Western blotting, immunohistochemistry and dual-label confocal microscopy coupled with quantitative analysis of colocalisation. NNMT was detected as a single protein of 29 kDa in both AD and non-disease control brains, which was significantly increased in AD medial temporal lobe compared to non-disease controls (7.5-fold, P < 0.026). There was no significant difference in expression in the cerebellum (P = 0.91). NNMT expression in AD medial temporal lobe and hippocampus was present in cholinergic neurones with no glial localisation. Cell-type expression was identical in both non-disease control and AD tissues. These results are the first to show, in a proof-of-concept study using a small patient cohort, that NNMT protein expression is increased in the AD brain and is present in neurones which degenerate in AD. These results suggest that the elevation of NNMT may be a common feature of many neurodegenerative diseases. Confirmation of this overexpression using a larger AD patient cohort will drive the future development of NNMT-targetting therapeutics which may slow or stop the disease pathogenesis, in contrast to current therapies which solely address AD symptoms.
Collapse
Affiliation(s)
- Altin Kocinaj
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London, SE1 9NH UK
| | - Tabassum Chaudhury
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London, SE1 9NH UK
| | - Mohammed S. Uddin
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London, SE1 9NH UK
| | - Rashad R. Junaid
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London, SE1 9NH UK
| | - David B. Ramsden
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, B15 2TH UK
| | - Geshanthi Hondhamuni
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ UK
| | - Fábio Klamt
- Laboratory of Cellular Biochemistry, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelos St., Porto Alegre, RS 90035-003 Brazil
- National Institute of Science and Technology – Translational Medicine (INCT-TM), Porto Alegre, Brazil
| | - Linda Parsons
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, 1 Wakefield Street, London, WC1N 1PJ UK
| | - Richard B. Parsons
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London, SE1 9NH UK
| |
Collapse
|
15
|
Hoefsmit EP, Rozeman EA, Van TM, Dimitriadis P, Krijgsman O, Conway JW, Pires da Silva I, van der Wal JE, Ketelaars SLC, Bresser K, Broeks A, Kerkhoven RM, Reeves JW, Warren S, Kvistborg P, Scolyer RA, Kapiteijn EW, Peeper DS, Long GV, Schumacher TNM, Blank CU. Comprehensive analysis of cutaneous and uveal melanoma liver metastases. J Immunother Cancer 2020; 8:e001501. [PMID: 33262254 PMCID: PMC7713183 DOI: 10.1136/jitc-2020-001501] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The profound disparity in response to immune checkpoint blockade (ICB) by cutaneous melanoma (CM) and uveal melanoma (UM) patients is not well understood. Therefore, we characterized metastases of CM and UM from the same metastatic site (liver), in order to dissect the potential underlying mechanism in differential response on ICB. METHODS Tumor liver samples from CM (n=38) and UM (n=28) patients were analyzed at the genomic (whole exome sequencing), transcriptional (RNA sequencing) and protein (immunohistochemistry and GeoMx Digital Spatial Profiling) level. RESULTS Comparison of CM and UM metastases from the same metastatic site revealed that, although originating from the same melanocyte lineage, CM and UM differed in somatic mutation profile, copy number profile, tumor mutational burden (TMB) and consequently predicted neoantigens. A higher melanin content and higher expression of the melanoma differentiation antigen MelanA was observed in liver metastases of UM patients. No difference in B2M and human leukocyte antigen-DR (HLA-DR) expression was observed. A higher expression of programmed cell death ligand 1 (PD-L1) was found in CM compared with UM liver metastases, although the majority of CM and UM liver metastases lacked PD-L1 expression. There was no difference in the extent of immune infiltration observed between CM and UM metastases, with the exception of a higher expression of CD163 (p<0.0001) in CM liver samples. While the extent of immune infiltration was similar for CM and UM metastases, the ratio of exhausted CD8 T cells to cytotoxic T cells, to total CD8 T cells and to Th1 cells, was significantly higher in UM metastases. CONCLUSIONS While TMB was different between CM and UM metastases, tumor immune infiltration was similar. The greater dependency on PD-L1 as an immune checkpoint in CM and the identification of higher exhaustion ratios in UM may both serve as explanations for the difference in response to ICB. Consequently, in order to improve current treatment for metastatic UM, reversal of T cell exhaustion beyond programmed cell death 1 blockade should be considered.
Collapse
Affiliation(s)
- Esmee P Hoefsmit
- Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Elisa A Rozeman
- Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Trieu My Van
- Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Petros Dimitriadis
- Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Oscar Krijgsman
- Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jordan W Conway
- Melanoma Institute Australia, North Sydney, New South Wales, Australia
| | | | | | - Steven L C Ketelaars
- Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kaspar Bresser
- Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Annegien Broeks
- Core Facility and Biobanking, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ron M Kerkhoven
- NKI Genomics Core Facility, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Sarah Warren
- NanoString Technologies Inc, Seattle, Washington, USA
| | - Pia Kvistborg
- Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Richard A Scolyer
- Melanoma Institute Australia, North Sydney, New South Wales, Australia
- The University of Sydney Faculty of Medicine and Health, Sydney, New South Wales, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, New South Wales, Australia
| | - Ellen W Kapiteijn
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniel S Peeper
- Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Georgina V Long
- Melanoma Institute Australia, North Sydney, New South Wales, Australia
- Royal North Shore Hospital, Melanoma Institute Australia, and The University of Sydney, Wollstonecraft, New South Wales, Australia
| | - Ton N M Schumacher
- Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Christian U Blank
- Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Fattore L, Mancini R, Ciliberto G. Cancer Stem Cells and the Slow Cycling Phenotype: How to Cut the Gordian Knot Driving Resistance to Therapy in Melanoma. Cancers (Basel) 2020; 12:cancers12113368. [PMID: 33202944 PMCID: PMC7696527 DOI: 10.3390/cancers12113368] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Cancer stem cells play a central role in the development of cancer and are poorly sensitive to standard chemotherapy and radiotherapy. Furthermore, they are also responsible for the onset of drug resistance. This also occurs in malignant melanoma, the deadliest form of skin cancer. Hence, cancer stem cells eradication is one of the main challenges for medical oncology. Here, we conducted a bioinformatics approach aimed to identify the main circuits and proteins underpinning cancer stem cell fitness in melanoma. Several lessons emerged from our work and may help to conceptualize future therapeutic approaches to prolong the efficacy of current therapies. Abstract Cancer stem cells (CSCs) have historically been defined as slow cycling elements that are able to differentiate into mature cells but without dedifferentiation in the opposite direction. Thanks to advances in genomic and non-genomic technologies, the CSC theory has more recently been reconsidered in a dynamic manner according to a “phenotype switching” plastic model. Transcriptional reprogramming rewires this plasticity and enables heterogeneous tumors to influence cancer progression and to adapt themselves to drug exposure by selecting a subpopulation of slow cycling cells, similar in nature to the originally defined CSCs. This model has been conceptualized for malignant melanoma tailored to explain resistance to target therapies. Here, we conducted a bioinformatics analysis of available data directed to the identification of the molecular pathways sustaining slow cycling melanoma stem cells. Using this approach, we identified a signature of 25 genes that were assigned to four major clusters, namely (1) kinases and metabolic changes, (2) melanoma-associated proteins, (3) Hippo pathway and (4) slow cycling/CSCs factors. Furthermore, we show how a protein−protein interaction network may be the main driver of these melanoma cell subpopulations. Finally, mining The Cancer Genome Atlas (TCGA) data we evaluated the expression levels of this signature in the four melanoma mutational subtypes. The concomitant alteration of these genes correlates with the worst overall survival (OS) for melanoma patients harboring BRAF-mutations. All together these results underscore the potentiality to target this signature to selectively kill CSCs and to achieve disease control in melanoma.
Collapse
Affiliation(s)
- Luigi Fattore
- Department of Research, Advanced Diagnostics and Technological Innovation, SAFU Laboratory, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS, “Fondazione G. Pascale”, 80131 Naples, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sant’ Andrea Hospital, Sapienza University of Rome, 00161 Rome, Italy;
| | - Gennaro Ciliberto
- Scientific Directorate, IRCSS Regina Elena National Cancer Institute, 00144 Rome, Italy
- Correspondence:
| |
Collapse
|
17
|
Granados K, Poelchen J, Novak D, Utikal J. Cellular Reprogramming-A Model for Melanoma Cellular Plasticity. Int J Mol Sci 2020; 21:E8274. [PMID: 33167306 PMCID: PMC7663830 DOI: 10.3390/ijms21218274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 12/14/2022] Open
Abstract
Cellular plasticity of cancer cells is often associated with phenotypic heterogeneity and drug resistance and thus remains a major challenge for the treatment of melanoma and other types of cancer. Melanoma cells have the capacity to switch their phenotype during tumor progression, from a proliferative and differentiated phenotype to a more invasive and dedifferentiated phenotype. However, the molecular mechanisms driving this phenotype switch are not yet fully understood. Considering that cellular heterogeneity within the tumor contributes to the high plasticity typically observed in melanoma, it is crucial to generate suitable models to investigate this phenomenon in detail. Here, we discuss the use of complete and partial reprogramming into induced pluripotent cancer (iPC) cells as a tool to obtain new insights into melanoma cellular plasticity. We consider this a relevant topic due to the high plasticity of melanoma cells and its association with a strong resistance to standard anticancer treatments.
Collapse
Affiliation(s)
- Karol Granados
- Skin Cancer Unit, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; (K.G.); (J.P.); (D.N.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135 Mannheim, Germany
- Department of Biochemistry, School of Medicine, University of Costa Rica (UCR), Rodrigo Facio Campus, San Pedro Montes Oca, San Jose 2060, Costa Rica
| | - Juliane Poelchen
- Skin Cancer Unit, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; (K.G.); (J.P.); (D.N.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135 Mannheim, Germany
| | - Daniel Novak
- Skin Cancer Unit, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; (K.G.); (J.P.); (D.N.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135 Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; (K.G.); (J.P.); (D.N.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135 Mannheim, Germany
| |
Collapse
|