1
|
Di L, Li M, Lei X, Xie W, Liu G, Wang Y, Zhang W, Zhu WG. Caspase-4 in glioma indicates deterioration and unfavorable prognosis by affecting tumor cell proliferation and immune cell recruitment. Sci Rep 2024; 14:17443. [PMID: 39075190 PMCID: PMC11286837 DOI: 10.1038/s41598-024-65018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/16/2024] [Indexed: 07/31/2024] Open
Abstract
Gliomas are the most common malignant tumors of the central nervous system, accounting for approximately 80% of all malignant brain tumors. Accumulating evidence suggest that pyroptosis plays an essential role in the progression of cancer. Unfortunately, the effect of the pyroptosis-related factor caspase-4 (CASP4) on immunotherapy and drug therapy for tumors has not been comprehensively investigated. In this study, we systematically screened six hub genes by pooling differential pyroptosis-related genes in The Cancer Genome Atlas (TCGA) glioma data and the degree of centrality of index-related genes in the protein-protein interaction network. We performed functional and pathway enrichment analyses of the six hub genes to explore their biological functions and potential molecular mechanisms. We then investigated the importance of CASP4 using Kaplan-Meier survival analysis of glioma patients. TCGA and the Chinese Glioma Genome Atlas (CGGA) databases showed that reduced CASP4 expression leads to the potent clinical deterioration of glioma patients. Computational analysis of the effect of CASP4 on the infiltration level and recruitment of glioma immune cells revealed that CASP4 expression was closely associated with a series of tumor-suppressive immune checkpoint molecules, chemokines, and chemokine receptors. We also found that aberrant CASP4 expression correlated with chemotherapeutic drug sensitivity. Finally, analysis at the cellular and tissue levels indicated an increase in CASP4 expression in glioma, and that CASP4 inhibition significantly inhibited the proliferation of glioma cells. Thus, CASP4 is implicated as a new prognostic biomarker for gliomas with the potential to further guide immunotherapy and chemotherapy strategies for glioma patients.
Collapse
Affiliation(s)
- Longjiang Di
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mengyan Li
- Guangdong Key Laboratory of Genomic Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Xianli Lei
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Faculty of Medicine, Peking University, Beijing, 100191, China
| | - Wenting Xie
- Department of Clinical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Guoqiang Liu
- Department of Clinical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Yongqing Wang
- Division of Rheumatology and Immunology, University of Toledo Medical Center, Toledo, OH, 43614, USA
| | - Wenjing Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.
| | - Wei-Guo Zhu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Key Laboratory of Genomic Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
- College of Basic Medical Sciences, Wan Nan Medical College, Wuhu, 241006, China.
- International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Janneh AH. Sphingolipid Signaling and Complement Activation in Glioblastoma: A Promising Avenue for Therapeutic Intervention. BIOCHEM 2024; 4:126-143. [PMID: 38894892 PMCID: PMC11185840 DOI: 10.3390/biochem4020007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Glioblastoma is the most common and aggressive type of malignant brain tumor with a poor prognosis due to the lack of effective treatment options. Therefore, new treatment options are required. Sphingolipids are essential components of the cell membrane, while complement components are integral to innate immunity, and both play a critical role in regulating glioblastoma survival signaling. This review focuses on recent studies investigating the functional roles of sphingolipid metabolism and complement activation signaling in glioblastoma. It also discusses how targeting these two systems together may emerge as a novel therapeutic approach.
Collapse
Affiliation(s)
- Alhaji H Janneh
- Hollings Cancer Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
3
|
Zhang C, Peng Q, Tang Y, Wang C, Wang S, Yu D, Hou S, Wang Y, Zhang L, Lin N. Resveratrol ameliorates glioblastoma inflammatory response by reducing NLRP3 inflammasome activation through inhibition of the JAK2/STAT3 pathway. J Cancer Res Clin Oncol 2024; 150:168. [PMID: 38546908 PMCID: PMC10978631 DOI: 10.1007/s00432-024-05625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/13/2024] [Indexed: 04/01/2024]
Abstract
OBJECTIVES The aim of this study was to investigate the anti-tumor effect of resveratrol (RSV) on glioblastoma (GBM) and its specific mechanism in improving the inflammatory response of the tumor microenvironment. The tumor microenvironment of GBM is highly neuroinflammatory, inducing tumor immunosuppression. Therefore, ameliorating the inflammatory response is an important focus for anti-tumor research. METHODS The anti-tumor effect of RSV on GBM was demonstrated through in vitro cellular assays, including CCK-8, EdU, PI staining, Transwell, wound healing assay, and flow cytometry. Potential mechanisms of RSV's anti-GBM effects were identified through network pharmacological analysis. In addition, the relationship of RSV with the JAK2/STAT3 signaling pathway and the inflammasome NLRP3 was verified using Western blot. RESULTS RSV significantly inhibited cell viability in GBM cell lines LN-229 and U87-MG. Furthermore, it inhibited the proliferation and invasive migration ability of GBM cells, while promoting apoptosis. Network pharmacological analysis revealed a close association between the anti-GBM effects of RSV and the JAK/STAT signaling pathway, as well as inflammatory responses. Western blot analysis confirmed that RSV inhibited the over-activation of the inflammasome NLRP3 through the JAK2/STAT3 signaling pathway. Partial reversal of RSV's inhibition of inflammasome NLRP3 was observed with the addition of the JAK/STAT agonist RO8191. CONCLUSIONS In vitro, RSV can exert anti-tumor effects on GBM and improve the inflammatory response in the GBM microenvironment by inhibiting the activation of the JAK2/STAT3 signaling pathway. These findings provide new insights into potential therapeutic targets for GBM.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China
| | - Qian Peng
- Hematology Department, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Hematologic Diseases Research Center of Anhui Medical University, Hefei, 230601, China
| | - Yuhang Tang
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China
| | - Chengcheng Wang
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China
| | - Shuai Wang
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China
| | - Dong Yu
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China
| | - Shiqiang Hou
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China
| | - Yu Wang
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China
| | - Lanlan Zhang
- Department of Science and Education, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China.
| | - Ning Lin
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China.
| |
Collapse
|
4
|
Bakhtiyari-Ramezani M, Nohekhan M, Akbari ME, Abbasvandi F, Bayat M, Akbari A, Nasiri M. Comparative assessment of direct and indirect cold atmospheric plasma effects, based on helium and argon, on human glioblastoma: an in vitro and in vivo study. Sci Rep 2024; 14:3578. [PMID: 38347045 PMCID: PMC10861458 DOI: 10.1038/s41598-024-54070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/08/2024] [Indexed: 02/15/2024] Open
Abstract
Recent research has highlighted the promising potential of cold atmospheric plasma (CAP) in cancer therapy. However, variations in study outcomes are attributed to differences in CAP devices and plasma parameters, which lead to diverse compositions of plasma products, including electrons, charged particles, reactive species, UV light, and heat. This study aimed to evaluate and compare the optimal exposure time, duration, and direction-dependent cellular effects of two CAPs, based on argon and helium gases, on glioblastoma U-87 MG cancer cells and an animal model of GBM. Two plasma jets were used as low-temperature plasma sources in which helium or argon gas was ionized by high voltage (4.5 kV) and frequency (20 kHz). In vitro assessments on human GBM and normal astrocyte cell lines, using MTT assays, flow cytometry analysis, wound healing assays, and immunocytochemistry for Caspase3 and P53 proteins, demonstrated that all studied plasma jets, especially indirect argon CAP, selectively induced apoptosis, hindered tumor cell growth, and inhibited migration. These effects occurred concurrently with increased intracellular levels of reactive oxygen species and decreased total antioxidant capacity in the cells. In vivo results further supported these findings, indicating that single indirect argon and direct helium CAP therapy, equal to high dose Temozolomide treatment, induced tumor cell death in a rat model of GBM. This was concurrent with a reduction in tumor size observed through PET-CT scan imaging and a significant increase in the survival rate. Additionally, there was a decrease in GFAP protein levels, a significant GBM tumor marker, and an increase in P53 protein expression based on immunohistochemical analyses. Furthermore, Ledge beam test analysis revealed general motor function improvement after indirect argon CAP therapy, similar to Temozolomide treatment. Taken together, these results suggest that CAP therapy, using indirect argon and direct helium jets, holds great promise for clinical applications in GBM treatment.
Collapse
Affiliation(s)
- Mahdiyeh Bakhtiyari-Ramezani
- Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box: 14399-53991, Tehran, Iran.
| | - Mojtaba Nohekhan
- Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box: 14399-53991, Tehran, Iran
| | | | - Fereshteh Abbasvandi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Research Institute, ACECR, Tehran, Iran
| | - Mahdis Bayat
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Research Institute, ACECR, Tehran, Iran
| | - Atieh Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Nasiri
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran
| |
Collapse
|
5
|
Mészáros Á, Molnár K, Fazakas C, Nógrádi B, Lüvi A, Dudás T, Tiszlavicz L, Farkas AE, Krizbai IA, Wilhelm I. Inflammasome activation in peritumoral astrocytes is a key player in breast cancer brain metastasis development. Acta Neuropathol Commun 2023; 11:155. [PMID: 37749707 PMCID: PMC10521486 DOI: 10.1186/s40478-023-01646-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/27/2023] [Indexed: 09/27/2023] Open
Abstract
Inflammasomes, primarily responsible for the activation of IL-1β, have emerged as critical regulators of the tumor microenvironment. By using in vivo and in vitro brain metastasis models, as well as human samples to study the role of the NLRP3 inflammasome in triple-negative breast cancer (TNBC) brain metastases, we found NLRP3 inflammasome components and IL-1β to be highly and specifically expressed in peritumoral astrocytes. Soluble factors from TNBC cells induced upregulation and activation of NLRP3 and IL-1β in astrocytes, while astrocyte-derived mediators augmented the proliferation of metastatic cells. In addition, inhibition of NLRP3 inflammasome activity using MCC950 or dampening the downstream effect of IL-1β prevented the proliferation increase in cancer cells. In vivo, MCC950 reduced IL-1β expression in peritumoral astrocytes, as well as the levels of inflammasome components and active IL-1β. Most importantly, significantly retarded growth of brain metastatic tumors was observed in mice treated with MCC950. Overall, astrocytes contribute to TNBC progression in the brain through activation of the NLRP3 inflammasome and consequent IL-1β release. We conclude that pharmacological targeting of inflammasomes may become a novel strategy in controlling brain metastatic diseases.
Collapse
Affiliation(s)
- Ádám Mészáros
- Institute of Biophysics, Biological Research Centre, ELKH (Eötvös Loránd Research Network), Temesvári Krt. 62, 6726, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Kinga Molnár
- Institute of Biophysics, Biological Research Centre, ELKH (Eötvös Loránd Research Network), Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Csilla Fazakas
- Institute of Biophysics, Biological Research Centre, ELKH (Eötvös Loránd Research Network), Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Bernát Nógrádi
- Institute of Biophysics, Biological Research Centre, ELKH (Eötvös Loránd Research Network), Temesvári Krt. 62, 6726, Szeged, Hungary
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Adél Lüvi
- Institute of Biophysics, Biological Research Centre, ELKH (Eötvös Loránd Research Network), Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Tamás Dudás
- Institute of Biophysics, Biological Research Centre, ELKH (Eötvös Loránd Research Network), Temesvári Krt. 62, 6726, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | | | - Attila Elek Farkas
- Institute of Biophysics, Biological Research Centre, ELKH (Eötvös Loránd Research Network), Temesvári Krt. 62, 6726, Szeged, Hungary
| | - István Adorján Krizbai
- Institute of Biophysics, Biological Research Centre, ELKH (Eötvös Loránd Research Network), Temesvári Krt. 62, 6726, Szeged, Hungary.
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania.
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, ELKH (Eötvös Loránd Research Network), Temesvári Krt. 62, 6726, Szeged, Hungary.
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania.
| |
Collapse
|
6
|
Sim J, Park J, Moon JS, Lim J. Dysregulation of inflammasome activation in glioma. Cell Commun Signal 2023; 21:239. [PMID: 37723542 PMCID: PMC10506313 DOI: 10.1186/s12964-023-01255-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/01/2023] [Indexed: 09/20/2023] Open
Abstract
Gliomas are the most common brain tumors characterized by complicated heterogeneity. The genetic, molecular, and histological pathology of gliomas is characterized by high neuro-inflammation. The inflammatory microenvironment in the central nervous system (CNS) has been closely linked with inflammasomes that control the inflammatory response and coordinate innate host defenses. Dysregulation of the inflammasome causes an abnormal inflammatory response, leading to carcinogenesis in glioma. Because of the clinical importance of the various physiological properties of the inflammasome in glioma, the inflammasome has been suggested as a promising treatment target for glioma management. Here, we summarize the current knowledge on the contribution of the inflammasomes in glioma and therapeutic insights. Video Abstract.
Collapse
Affiliation(s)
- JeongMin Sim
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, 11160, Republic of Korea
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University College of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam, 13496, Republic of Korea
| | - JeongMan Park
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, 11160, Republic of Korea
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University College of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam, 13496, Republic of Korea
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Republic of Korea.
| | - Jaejoon Lim
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, 11160, Republic of Korea.
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University College of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam, 13496, Republic of Korea.
| |
Collapse
|
7
|
Sim J, Ahn JW, Park J, Kim YJ, Jeong JY, Lee JM, Cho K, Ahn HJ, Sung KS, Moon JS, Moon JH, Lim J. Non-canonical NLRC4 inflammasomes in astrocytes contribute to glioma malignancy. Inflamm Res 2023; 72:813-827. [PMID: 36899084 DOI: 10.1007/s00011-023-01710-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND The present study was designed to explore the pathological role of non-canonical NLRC4 inflammasome in glioma. METHODS This retrospective study included bioinformatical analysis, including survival, gene ontology, ssGSEA, cox regression, IPA and drug repositioning with TCGA and DepMap database. Experimental validations were conducted in glioma patient's sample and evaluated with histological or cellular functional analysis. RESULT Clinical dataset analysis revealed that non-canonical NLRC4 inflammasomes significantly contribute to glioma progression and poor survival rates. Experimental validation was revealed that the expression of non-canonical NLRC4 inflammasomes were co-localized with astrocytes in malignant gliomas, with a sustained clinical correlation observed between astrocytes and inflammasome signatures. Indeed, the formation of an inflammatory microenvironment increased in malignant gliomas, leading to pyroptosis, known as inflammatory cell death. Molecular interaction analysis revealed that NF-κB pathways potentially serve as the connecting point between the canonical and noncanonical pathways of the NLRC4 inflammasome. Finally, drug repositioning analysis of non-canonical NLRC4 inflammasome-associated molecules revealed that MK-5108, PF4981517, and CTEP may represent effective options for glioma therapy. CONCLUSION The findings of this study suggest that non-canonical NLRC4 inflammasomes contribute to poor prognosis in patients with glioma and induce an inflammatory microenvironment. We propose the pathological phenomenon of non-canonical NLRC4 inflammasomes and several therapeutic strategies based on the modulation of the inflammatory tumor microenvironment.
Collapse
Affiliation(s)
- JeongMin Sim
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, Republic of Korea.,Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea
| | - Ju Won Ahn
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, Republic of Korea.,Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea
| | - JeongMan Park
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, Republic of Korea.,Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea
| | - Yu Jin Kim
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, Republic of Korea.,Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea
| | - Ju-Yeon Jeong
- CHA Future Medicine Research Institute, CHA Bundang Medical Center, Seongnam, Korea
| | - Ji Min Lee
- CHA Future Medicine Research Institute, CHA Bundang Medical Center, Seongnam, Korea
| | - Kyunggi Cho
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, Republic of Korea
| | - Hee Jung Ahn
- CHA Future Medicine Research Institute, CHA Bundang Medical Center, Seongnam, Korea.,Department of Pathology, CHA Bundang Medical Center, CHA University College of Medicine, Seongnam, Korea
| | - Kyoung Su Sung
- Department of Neurosurgery, Dong-A University Hospital, Dong-A University College of Medicine, Busan, Korea
| | - Jong-Seok Moon
- Soonchunhyang Institution of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03772, Republic of Korea.
| | - Jaejoon Lim
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, Republic of Korea. .,Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
8
|
Li B, Liu Y, Sun S. Pump proton inhibitors display anti-tumour potential in glioma. Cell Prolif 2022:e13321. [PMID: 35961680 DOI: 10.1111/cpr.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES Glioma is one of the most aggressive brain tumours with poor overall survival despite advanced technology in surgical resection, chemotherapy and radiation. Progression and recurrence are the hinge causes of low survival. Our aim is to explain the concrete mechanism in the proliferation and progression of tumours based on tumour microenvironment (TME). The main purpose is to illustrate the mechanism of proton pump inhibitors (PPIs) in affecting acidity, hypoxia, oxidative stress, inflammatory response and autophagy based on the TME to induce apoptosis and enhance the sensitivity of chemoradiotherapy. FINDINGS TME is the main medium for tumour growth and progression. Acidity, hypoxia, inflammatory response, autophagy, angiogenesis and so on are the main causes of tumour progress. PPIs, as a common clinical drug to inhibit gastric acid secretion, have the advantages of fast onset, long action time and small adverse reactions. Nowadays, several kinds of literature highlight the potential of PPIs in inhibiting tumour progression. However, long-term use of PPIs alone also has obvious side effects. Therefore, till now, how to apply PPIs to promote the effect of radio-chemotherapy and find the concrete dose and concentration of combined use are novel challenges. CONCLUSIONS PPIs display the potential in enhancing the sensitivity of chemoradiotherapy to defend against glioma based on TME. In the clinic, it is also necessary to explore specific concentrations and dosages in synthetic applications.
Collapse
Affiliation(s)
- Bihan Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Ying Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Shilong Sun
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
9
|
Aisa A, Tan Y, Li X, Zhang D, Shi Y, Yuan Y. Comprehensive Analysis of the Brain-Expressed X-Link Protein Family in Glioblastoma Multiforme. Front Oncol 2022; 12:911942. [PMID: 35860560 PMCID: PMC9289282 DOI: 10.3389/fonc.2022.911942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common, malignant, and deadly primary brain tumor in adults. Brain-expressed X-link (BEX) protein family is involved in tumorigenesis. Here, we have explored the biological function and the prognostic value of the BEX family in GBM. Differentially expressed BEX genes between GBM and normal tissue were screened by using The Cancer Genome Atlas (TCGA) database. Univariate and multivariate Cox regression analyses identified the prognosis‐related genes BEX1, BEX2, and BEX4, which were involved in the regulation of immune response. The results of correlation analysis and protein–protein interaction network (PPI network) showed that there was a significant correlation between the BEX family and TCEAL family in GBM. Furthermore, the expression of transcription elongation factor A (SII)-like (TCEAL) family is generally decreased in GBM and related to poor prognosis. With the use of the least absolute shrinkage and selection operator (LASSO) Cox regression, a prognostic model including the BEX family and TCEAL family was built to accurately predict the likelihood of overall survival (OS) in GBM patients. Therefore, we demonstrated that the BEX family and TCEAL family possessed great potential as therapeutic targets and prognostic biomarkers in GBM. Further investigations in large‐scale, multicenter, and prospective clinical cohorts are needed to confirm the prognostic model developed in our study.
Collapse
Affiliation(s)
- Adilai Aisa
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yinuo Tan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xinyu Li
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Ding Zhang
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yun Shi
- Nursing Department, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Yuan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- *Correspondence: Ying Yuan,
| |
Collapse
|
10
|
Wu J, Wang L, Xu J. The role of pyroptosis in modulating the tumor immune microenvironment. Biomark Res 2022; 10:45. [PMID: 35739593 PMCID: PMC9229852 DOI: 10.1186/s40364-022-00391-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/03/2022] [Indexed: 12/12/2022] Open
Abstract
The tumor immune microenvironment (TIME) plays a key role in immunosuppression in cancer, which results in tumorigenesis and tumor progression, and contributes to insensitivity to chemotherapy and immunotherapy. Understanding the mechanism of TIME formation is critical for overcoming cancer. Pyroptosis exerts a dual role in modulating the TIME. In this review, we summarize the regulatory mechanisms of pyroptosis in modulating the TIME and the potential application of targeted pyroptosis therapy in the clinic. Several treatments targeting pyroptosis have been developed; however, the majority of treatments are still in preclinical studies. Only a few agents have been used in clinic, but the outcomes are unsatisfactory. More studies are necessary to determine the role of pyroptosis in cancer, and more research is required to realize the application of treatments targeting pyroptosis in the clinic.
Collapse
Affiliation(s)
- Jinxiang Wu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Wang
- Department of Pancreatic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, China
| | - Jianwei Xu
- Department of Pancreatic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, China.
| |
Collapse
|