1
|
Sendra M, de Dios Hourcade J, Temiño S, Sarabia AJ, Ocaña OH, Domínguez JN, Torres M. Cre recombinase microinjection for single-cell tracing and localised gene targeting. Development 2023; 150:286898. [PMID: 36734327 PMCID: PMC10110498 DOI: 10.1242/dev.201206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/17/2022] [Indexed: 02/04/2023]
Abstract
Tracing and manipulating cells in embryos are essential to understand development. Lipophilic dye microinjections, viral transfection and iontophoresis have been key to map the origin of the progenitor cells that form the different organs in the post-implantation mouse embryo. These techniques require advanced manipulation skills and only iontophoresis, a demanding approach of limited efficiency, has been used for single-cell labelling. Here, we perform lineage tracing and local gene ablation using cell-permeant Cre recombinase (TAT-Cre) microinjection. First, we map the fate of undifferentiated progenitors to the different heart chambers. Then, we achieve single-cell recombination by titrating the dose of TAT-Cre, which allows clonal analysis of nascent mesoderm progenitors. Finally, injecting TAT-Cre to Mycnflox/flox embryos in the primitive heart tube revealed that Mycn plays a cell-autonomous role in maintaining cardiomyocyte proliferation. This tool will help researchers identify the cell progenitors and gene networks involved in organ development, helping to understand the origin of congenital defects.
Collapse
Affiliation(s)
- Miquel Sendra
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, 28029 Madrid, Spain
| | - Juan de Dios Hourcade
- Transgenesis Unit, Centro Nacional de Investigaciones Cardiovasculares, CNIC, 28029 Madrid, Spain
| | - Susana Temiño
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, 28029 Madrid, Spain
| | - Antonio J Sarabia
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain
| | - Oscar H Ocaña
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, 28029 Madrid, Spain
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain
| | - Jorge N Domínguez
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, 18016 Granada, Spain
| | - Miguel Torres
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, 28029 Madrid, Spain
| |
Collapse
|
2
|
Kumamoto T, Ohtaka-Maruyama C. Visualizing Cortical Development and Evolution: A Toolkit Update. Front Neurosci 2022; 16:876406. [PMID: 35495046 PMCID: PMC9039325 DOI: 10.3389/fnins.2022.876406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Visualizing the process of neural circuit formation during neurogenesis, using genetically modified animals or somatic transgenesis of exogenous plasmids, has become a key to decipher cortical development and evolution. In contrast to the establishment of transgenic animals, the designing and preparation of genes of interest into plasmids are simple and easy, dispensing with time-consuming germline modifications. These advantages have led to neuron labeling based on somatic transgenesis. In particular, mammalian expression plasmid, CRISPR-Cas9, and DNA transposon systems, have become widely used for neuronal visualization and functional analysis related to lineage labeling during cortical development. In this review, we discuss the advantages and limitations of these recently developed techniques.
Collapse
Affiliation(s)
- Takuma Kumamoto
- Developmental Neuroscience Project, Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | |
Collapse
|