1
|
Soulié M, Deletraz A, Wehbie M, Mahler F, Chantemargue B, Bouchemal I, Le Roy A, Petit-Härtlein I, Fieschi F, Breyton C, Ebel C, Keller S, Durand G. Rigid Cyclic Fluorinated Detergents: Fine-Tuning the Hydrophilic-Lipophilic Balance Controls Self-Assembling and Biochemical Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32971-32982. [PMID: 38885044 DOI: 10.1021/acsami.4c03359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
We report herein the synthesis of three detergents bearing a perfluorinated cyclohexyl group connected through a short, hydrogenated spacer (i.e., propyl, butyl, or pentyl) to a β-maltoside polar head that are, respectively, called FCymal-3, FCymal-4, and FCymal-5. Increasing the length of the spacer decreased the critical micellar concentration (CMC), as demonstrated by surface tension (SFT) and isothermal titration calorimetry (ITC), from 5 mM for FCymal-3 to 0.7 mM for FCymal-5. The morphology of the micelles was studied by dynamic light scattering (DLS), analytical ultracentrifugation (AUC), and small-angle X-ray scattering (SAXS), indicating heterogeneous rod-like shapes. While micelles of FCymal-3 and -4 have similar hydrodynamic diameters of ∼10 nm, those of FCymal-5 were twice as large. We also investigated the ability of the detergents to solubilize lipid membranes made of 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine (POPC). Molecular modeling indicated that the FCymal detergents generate disorder in lipid bilayers, with FCymal-3 being inserted more deeply into bilayers than FCymal-4 and -5. This was experimentally confirmed using POPC vesicles that were completely solubilized within 2 h with FCymal-3, whereas FCymal-5 required >8 h. A similar trend was noticed for the direct extraction of membrane proteins from E. coli membranes, with FCymal-3 being more potent than FCymal-5. An opposite trend was observed in terms of stabilization of the two model membrane proteins bacteriorhodopsin (bR) and SpNOX. In all three FCymal detergents, bR was stable for at least 2 months with no signs of aggregation. However, while the structural integrity of bR was fully preserved in FCymal-4 and -5, minor bleaching was observed in FCymal-3. Similarly, SpNOX exhibited the least activity in FCymal-3 and the highest activity in FCymal-5. By combining solubilizing and stabilizing potency, FCymal detergents push forward our expectations of the usefulness of fluorinated detergents for handling and investigating membrane proteins.
Collapse
Affiliation(s)
- Marine Soulié
- Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM), Equipe Chimie Bioorganique et Systèmes amphiphiles, 301 Rue Baruch de Spinoza, 84916 Avignon Cedex 9, France
- Avignon Université, Unité Propre de Recherche et d'Innovation, Equipe Synthèse et Systèmes Colloïdaux Bio-organiques, 301 Rue Baruch de Spinoza, 84916 Avignon Cedex 9, France
| | - Anais Deletraz
- Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM), Equipe Chimie Bioorganique et Systèmes amphiphiles, 301 Rue Baruch de Spinoza, 84916 Avignon Cedex 9, France
| | - Moheddine Wehbie
- Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM), Equipe Chimie Bioorganique et Systèmes amphiphiles, 301 Rue Baruch de Spinoza, 84916 Avignon Cedex 9, France
| | - Florian Mahler
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | | | - Ilham Bouchemal
- Univ. Grenoble Alpes, CNRS, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Aline Le Roy
- Univ. Grenoble Alpes, CNRS, CEA, CNRS, IBS, F-38000 Grenoble, France
| | | | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, CNRS, IBS, F-38000 Grenoble, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Cécile Breyton
- Univ. Grenoble Alpes, CNRS, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Christine Ebel
- Univ. Grenoble Alpes, CNRS, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Sandro Keller
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Grégory Durand
- Institut des Biomolécules Max Mousseron (UMR 5247 UM-CNRS-ENSCM), Equipe Chimie Bioorganique et Systèmes amphiphiles, 301 Rue Baruch de Spinoza, 84916 Avignon Cedex 9, France
- Avignon Université, Unité Propre de Recherche et d'Innovation, Equipe Synthèse et Systèmes Colloïdaux Bio-organiques, 301 Rue Baruch de Spinoza, 84916 Avignon Cedex 9, France
| |
Collapse
|
2
|
Pata J, Moreno A, Wiseman B, Magnard S, Lehlali I, Dujardin M, Banerjee A, Högbom M, Boumendjel A, Chaptal V, Prasad R, Falson P. Purification and characterization of Cdr1, the drug-efflux pump conferring azole resistance in Candida species. Biochimie 2024; 220:167-178. [PMID: 38158037 DOI: 10.1016/j.biochi.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Candida albicans and C. glabrata express exporters of the ATP-binding cassette (ABC) superfamily and address them to their plasma membrane to expel azole antifungals, which cancels out their action and allows the yeast to become multidrug resistant (MDR). In a way to understand this mechanism of defense, we describe the purification and characterization of Cdr1, the membrane ABC exporter mainly responsible for such phenotype in both species. Cdr1 proteins were functionally expressed in the baker yeast, tagged at their C-terminal end with either a His-tag for the glabrata version, cgCdr1-His, or a green fluorescent protein (GFP) preceded by a proteolytic cleavage site for the albicans version, caCdr1-P-GFP. A membrane Cdr1-enriched fraction was then prepared to assay several detergents and stabilizers, probing their level of extraction and the ATPase activity of the proteins as a functional marker. Immobilized metal-affinity and size-exclusion chromatographies (IMAC, SEC) were then carried out to isolate homogenous samples. Overall, our data show that although topologically and phylogenetically close, both proteins display quite distinct behaviors during the extraction and purification steps, and qualify cgCdr1 as a good candidate to characterize this type of proteins for developing future inhibitors of their azole antifungal efflux activity.
Collapse
Affiliation(s)
- Jorgaq Pata
- Drug Resistance & Membrane Proteins Group, CNRS-Lyon 1 University Laboratory UMR 5086, IBCP, 69367, CEDEX Lyon 07, France
| | - Alexis Moreno
- Drug Resistance & Membrane Proteins Group, CNRS-Lyon 1 University Laboratory UMR 5086, IBCP, 69367, CEDEX Lyon 07, France; CALIXAR, 60 Avenue Rockefeller, Lyon, France
| | - Benjamin Wiseman
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Sandrine Magnard
- Drug Resistance & Membrane Proteins Group, CNRS-Lyon 1 University Laboratory UMR 5086, IBCP, 69367, CEDEX Lyon 07, France
| | - Idriss Lehlali
- Drug Resistance & Membrane Proteins Group, CNRS-Lyon 1 University Laboratory UMR 5086, IBCP, 69367, CEDEX Lyon 07, France
| | | | - Atanu Banerjee
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, India
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | | | - Vincent Chaptal
- Drug Resistance & Membrane Proteins Group, CNRS-Lyon 1 University Laboratory UMR 5086, IBCP, 69367, CEDEX Lyon 07, France
| | - Rajendra Prasad
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, India
| | - Pierre Falson
- Drug Resistance & Membrane Proteins Group, CNRS-Lyon 1 University Laboratory UMR 5086, IBCP, 69367, CEDEX Lyon 07, France.
| |
Collapse
|