1
|
Lowengrub JS, Frieboes HB, Jin F, Chuang YL, Li X, Macklin P, Wise SM, Cristini V. Nonlinear modelling of cancer: bridging the gap between cells and tumours. NONLINEARITY 2010; 23:R1-R9. [PMID: 20808719 PMCID: PMC2929802 DOI: 10.1088/0951-7715/23/1/r01] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Despite major scientific, medical and technological advances over the last few decades, a cure for cancer remains elusive. The disease initiation is complex, and including initiation and avascular growth, onset of hypoxia and acidosis due to accumulation of cells beyond normal physiological conditions, inducement of angiogenesis from the surrounding vasculature, tumour vascularization and further growth, and invasion of surrounding tissue and metastasis. Although the focus historically has been to study these events through experimental and clinical observations, mathematical modelling and simulation that enable analysis at multiple time and spatial scales have also complemented these efforts. Here, we provide an overview of this multiscale modelling focusing on the growth phase of tumours and bypassing the initial stage of tumourigenesis. While we briefly review discrete modelling, our focus is on the continuum approach. We limit the scope further by considering models of tumour progression that do not distinguish tumour cells by their age. We also do not consider immune system interactions nor do we describe models of therapy. We do discuss hybrid-modelling frameworks, where the tumour tissue is modelled using both discrete (cell-scale) and continuum (tumour-scale) elements, thus connecting the micrometre to the centimetre tumour scale. We review recent examples that incorporate experimental data into model parameters. We show that recent mathematical modelling predicts that transport limitations of cell nutrients, oxygen and growth factors may result in cell death that leads to morphological instability, providing a mechanism for invasion via tumour fingering and fragmentation. These conditions induce selection pressure for cell survivability, and may lead to additional genetic mutations. Mathematical modelling further shows that parameters that control the tumour mass shape also control its ability to invade. Thus, tumour morphology may serve as a predictor of invasiveness and treatment prognosis.
Collapse
Affiliation(s)
- J S Lowengrub
- Department of Biomedical Engineering, Center for Mathematical and Computational Biology, University of California at Irvine, Irvine, CA 92697, USA
| | - H B Frieboes
- School of Health Information Sciences, University of Texas Health Science Center, Houston, TX 77030, USA
- Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA
| | - F Jin
- School of Health Information Sciences, University of Texas Health Science Center, Houston, TX 77030, USA
- Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA
| | - Y-L Chuang
- School of Health Information Sciences, University of Texas Health Science Center, Houston, TX 77030, USA
| | - X Li
- Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA
| | - P Macklin
- School of Health Information Sciences, University of Texas Health Science Center, Houston, TX 77030, USA
| | - S M Wise
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA
| | - V Cristini
- School of Health Information Sciences, University of Texas Health Science Center, Houston, TX 77030, USA
| |
Collapse
|