1
|
Li Y, Liu H, Steenwyk JL, LaBella AL, Harrison MC, Groenewald M, Zhou X, Shen XX, Zhao T, Hittinger CT, Rokas A. Contrasting modes of macro and microsynteny evolution in a eukaryotic subphylum. Curr Biol 2022; 32:5335-5343.e4. [PMID: 36334587 PMCID: PMC10615371 DOI: 10.1016/j.cub.2022.10.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Examination of the changes in order and arrangement of homologous genes is key for understanding the mechanisms of genome evolution in eukaryotes. Previous comparisons between eukaryotic genomes have revealed considerable conservation across species that diverged hundreds of millions of years ago (e.g., vertebrates,1,2,3 bilaterian animals,4,5 and filamentous fungi6). However, understanding how genome organization evolves within and between eukaryotic major lineages remains underexplored. We analyzed high-quality genomes of 120 representative budding yeast species (subphylum Saccharomycotina) spanning ∼400 million years of eukaryotic evolution to examine how their genome organization evolved and to compare it with the evolution of animal and plant genome organization.7 We found that the decay of both macrosynteny (the conservation of homologous chromosomes) and microsynteny (the conservation of local gene content and order) was strongly associated with evolutionary divergence across budding yeast major clades. However, although macrosynteny decayed very fast, within ∼100 million years, the microsynteny of many genes-especially genes in metabolic clusters (e.g., in the GAL gene cluster8)-was much more deeply conserved both within major clades and across the subphylum. We further found that when genomes with similar evolutionary divergence times were compared, budding yeasts had lower macrosynteny conservation than animals and filamentous fungi but higher conservation than angiosperms. In contrast, budding yeasts had levels of microsynteny conservation on par with mammals, whereas angiosperms exhibited very low conservation. Our results provide new insight into the tempo and mode of the evolution of gene and genome organization across an entire eukaryotic subphylum.
Collapse
Affiliation(s)
- Yuanning Li
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China.
| | - Hongyue Liu
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA; Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA
| | - Abigail L LaBella
- Department of Biological Sciences, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA; Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA
| | - Marie-Claire Harrison
- Department of Biological Sciences, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA; Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA
| | - Marizeth Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, 483 Wushan Road, Guangzhou 520643, China
| | - Xing-Xing Shen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Tao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Taicheng Road 3, Yangling 712100, China
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J.F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, 1552 University Avenue, University of Wisconsin-Madison, Madison, WI 53726-4084, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA; Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA; Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.
| |
Collapse
|
2
|
Tao W, Bian J, Tang M, Zeng Y, Luo R, Ke Q, Li T, Li Y, Cui L. Genomic insights into positive selection during barley domestication. BMC PLANT BIOLOGY 2022; 22:267. [PMID: 35641942 PMCID: PMC9158214 DOI: 10.1186/s12870-022-03655-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cultivated barley (Hordeum vulgare) is widely used in animal feed, beverages, and foods and has become a model crop for molecular evolutionary studies. Few studies have examined the evolutionary fates of different types of genes in barley during the domestication process. RESULTS The rates of nonsynonymous substitution (Ka) to synonymous substitution (Ks) were calculated by comparing orthologous genes in different barley groups (wild vs. landrace and landrace vs. improved cultivar). The rates of evolution, properties, expression patterns, and diversity of positively selected genes (PSGs) and negatively selected genes (NSGs) were compared. PSGs evolved more rapidly, possessed fewer exons, and had lower GC content than NSGs; they were also shorter and had shorter intron, exon, and first exon lengths. Expression levels were lower, the tissue specificity of expression was higher, and codon usage bias was weaker for PSGs than for NSGs. Nucleotide diversity analysis revealed that PSGs have undergone a more severe genetic bottleneck than NSGs. Several candidate PSGs were involved in plant growth and development, which might make them as excellent targets for the molecular breeding of barley. CONCLUSIONS Our comprehensive analysis of the evolutionary, structural, and functional divergence between PSGs and NSGs in barley provides new insight into the evolutionary trajectory of barley during domestication. Our findings also aid future functional studies of PSGs in barley.
Collapse
Affiliation(s)
- Wenjing Tao
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045 China
| | - Jianxin Bian
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, 261325 China
| | - Minqiang Tang
- College of Forestry, Hainan University, Haikou, Hainan, 570228 China
| | - Yan Zeng
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045 China
| | - Ruihan Luo
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045 China
| | - Qinglin Ke
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045 China
| | - Tingting Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045 China
| | - Yihan Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045 China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045 China
| |
Collapse
|
3
|
Drillon G, Champeimont R, Oteri F, Fischer G, Carbone A. Phylogenetic Reconstruction Based on Synteny Block and Gene Adjacencies. Mol Biol Evol 2020; 37:2747-2762. [PMID: 32384156 PMCID: PMC7475045 DOI: 10.1093/molbev/msaa114] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gene order can be used as an informative character to reconstruct phylogenetic relationships between species independently from the local information present in gene/protein sequences. PhyChro is a reconstruction method based on chromosomal rearrangements, applicable to a wide range of eukaryotic genomes with different gene contents and levels of synteny conservation. For each synteny breakpoint issued from pairwise genome comparisons, the algorithm defines two disjoint sets of genomes, named partial splits, respectively, supporting the two block adjacencies defining the breakpoint. Considering all partial splits issued from all pairwise comparisons, a distance between two genomes is computed from the number of partial splits separating them. Tree reconstruction is achieved through a bottom-up approach by iteratively grouping sister genomes minimizing genome distances. PhyChro estimates branch lengths based on the number of synteny breakpoints and provides confidence scores for the branches. PhyChro performance is evaluated on two data sets of 13 vertebrates and 21 yeast genomes by using up to 130,000 and 179,000 breakpoints, respectively, a scale of genomic markers that has been out of reach until now. PhyChro reconstructs very accurate tree topologies even at known problematic branching positions. Its robustness has been benchmarked for different synteny block reconstruction methods. On simulated data PhyChro reconstructs phylogenies perfectly in almost all cases, and shows the highest accuracy compared with other existing tools. PhyChro is very fast, reconstructing the vertebrate and yeast phylogenies in <15 min.
Collapse
Affiliation(s)
- Guénola Drillon
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative—UMR 7238, Paris, France, Paris, France
| | - Raphaël Champeimont
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative—UMR 7238, Paris, France, Paris, France
| | - Francesco Oteri
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative—UMR 7238, Paris, France, Paris, France
| | - Gilles Fischer
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative—UMR 7238, Paris, France, Paris, France
| | - Alessandra Carbone
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative—UMR 7238, Paris, France, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
4
|
de Bruijn S, Zhao T, Muiño JM, Schranz EM, Angenent GC, Kaufmann K. PISTILLATA paralogs in Tarenaya hassleriana have diverged in interaction specificity. BMC PLANT BIOLOGY 2018; 18:368. [PMID: 30577806 PMCID: PMC6303913 DOI: 10.1186/s12870-018-1574-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Floral organs are specified by MADS-domain transcription factors that act in a combinatorial manner, as summarized in the (A)BCE model. However, this evolutionarily conserved model is in contrast to a remarkable amount of morphological diversity in flowers. One of the mechanisms suggested to contribute to this diversity is duplication of floral MADS-domain transcription factors. Although gene duplication is often followed by loss of one of the copies, sometimes both copies are retained. If both copies are retained they will initially be redundant, providing freedom for one of the paralogs to change function. Here, we examine the evolutionary fate and functional consequences of a transposition event at the base of the Brassicales that resulted in the duplication of the floral regulator PISTILLATA (PI), using Tarenaya hassleriana (Cleomaceae) as a model system. RESULTS The transposition of a genomic region containing a PI gene led to two paralogs which are located at different positions in the genome. The original PI copy is syntenic in position with most angiosperms, whereas the transposed copy is syntenic with the PI genes in Brassicaceae. The two PI paralogs of T. hassleriana have very similar expression patterns. However, they may have diverged in function, as only one of these PI proteins was able to act heterologously in the first whorl of A. thaliana flowers. We also observed differences in protein complex formation between the two paralogs, and the two paralogs exhibit subtle differences in DNA-binding specificity. Sequence analysis indicates that most of the protein sequence divergence between the two T. hassleriana paralogs emerged in a common ancestor of the Cleomaceae and the Brassicaceae. CONCLUSIONS We found that the PI paralogs in T. hassleriana have similar expression patterns, but may have diverged at the level of protein function. Data suggest that most protein sequence divergence occurred rapidly, prior to the origin of the Brassicaceae and Cleomaceae. It is tempting to speculate that the interaction specificities of the Brassicaceae-specific PI proteins are different compared to the PI found in other angiosperms. This could lead to PI regulating partly different genes in the Brassicaceae, and ultimately might result in change floral in morphology.
Collapse
Affiliation(s)
- Suzanne de Bruijn
- Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Tao Zhao
- Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jose M. Muiño
- Institute for Biology, Systems Biology of Gene Regulation, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eric M. Schranz
- Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Gerco C. Angenent
- Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Kerstin Kaufmann
- Institute for Biology, Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| |
Collapse
|
5
|
Gärtner F, Höner zu Siederdissen C, Müller L, Stadler PF. Coordinate systems for supergenomes. Algorithms Mol Biol 2018; 13:15. [PMID: 30258487 PMCID: PMC6151955 DOI: 10.1186/s13015-018-0133-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/07/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Genome sequences and genome annotation data have become available at ever increasing rates in response to the rapid progress in sequencing technologies. As a consequence the demand for methods supporting comparative, evolutionary analysis is also growing. In particular, efficient tools to visualize-omics data simultaneously for multiple species are sorely lacking. A first and crucial step in this direction is the construction of a common coordinate system. Since genomes not only differ by rearrangements but also by large insertions, deletions, and duplications, the use of a single reference genome is insufficient, in particular when the number of species becomes large. RESULTS The computational problem then becomes to determine an order and orientations of optimal local alignments that are as co-linear as possible with all the genome sequences. We first review the most prominent approaches to model the problem formally and then proceed to showing that it can be phrased as a particular variant of the Betweenness Problem. It is NP hard in general. As exact solutions are beyond reach for the problem sizes of practical interest, we introduce a collection of heuristic simplifiers to resolve ordering conflicts. CONCLUSION Benchmarks on real-life data ranging from bacterial to fly genomes demonstrate the feasibility of computing good common coordinate systems.
Collapse
Affiliation(s)
- Fabian Gärtner
- Competence Center for Scalable Data Services and Solutions Dresden/Leipzig, Universität Leipzig, Augustusplatz 12, 04107 Leipzig, Germany
- Bioinformatics Group, Department of Computer Science, Universität Leipzig, Härtelstraße 16–18, 04107 Leipzig, Germany
| | - Christian Höner zu Siederdissen
- Bioinformatics Group, Department of Computer Science, Universität Leipzig, Härtelstraße 16–18, 04107 Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstraße 16–18, 04107 Leipzig, Germany
| | - Lydia Müller
- Competence Center for Scalable Data Services and Solutions Dresden/Leipzig, Universität Leipzig, Augustusplatz 12, 04107 Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstraße 16–18, 04107 Leipzig, Germany
- Automatic Language Processing Group, Department of Computer Science, Universität Leipzig, Augustusplatz 12, 04107 Leipzig, Germany
| | - Peter F. Stadler
- Competence Center for Scalable Data Services and Solutions Dresden/Leipzig, Universität Leipzig, Augustusplatz 12, 04107 Leipzig, Germany
- Bioinformatics Group, Department of Computer Science, Universität Leipzig, Härtelstraße 16–18, 04107 Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstraße 16–18, 04107 Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany
- Department of Theoretical Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Center for non-coding RNA in Technology and Health, Grønegårdsvej 3, 1870 Frederiksberg C, Denmark
- Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501 USA
| |
Collapse
|
6
|
The evolution of the temporal program of genome replication. Nat Commun 2018; 9:2199. [PMID: 29875360 PMCID: PMC5989221 DOI: 10.1038/s41467-018-04628-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/08/2018] [Indexed: 01/19/2023] Open
Abstract
Genome replication is highly regulated in time and space, but the rules governing the remodeling of these programs during evolution remain largely unknown. We generated genome-wide replication timing profiles for ten Lachancea yeasts, covering a continuous evolutionary range from closely related to more divergent species. We show that replication programs primarily evolve through a highly dynamic evolutionary renewal of the cohort of active replication origins. We found that gained origins appear with low activity yet become more efficient and fire earlier as they evolutionarily age. By contrast, origins that are lost comprise the complete range of firing strength. Additionally, they preferentially occur in close vicinity to strong origins. Interestingly, despite high evolutionary turnover, active replication origins remain regularly spaced along chromosomes in all species, suggesting that origin distribution is optimized to limit large inter-origin intervals. We propose a model on the evolutionary birth, death, and conservation of active replication origins. Temporal programs of genome replication show different levels of conservation between closely or distantly related species. Here, the authors generate genome-wide replication timing profiles for ten yeast species, and analyze their evolutionary dynamics.
Collapse
|
7
|
Dujon BA, Louis EJ. Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina). Genetics 2017; 206:717-750. [PMID: 28592505 PMCID: PMC5499181 DOI: 10.1534/genetics.116.199216] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/03/2017] [Indexed: 12/15/2022] Open
Abstract
Considerable progress in our understanding of yeast genomes and their evolution has been made over the last decade with the sequencing, analysis, and comparisons of numerous species, strains, or isolates of diverse origins. The role played by yeasts in natural environments as well as in artificial manufactures, combined with the importance of some species as model experimental systems sustained this effort. At the same time, their enormous evolutionary diversity (there are yeast species in every subphylum of Dikarya) sparked curiosity but necessitated further efforts to obtain appropriate reference genomes. Today, yeast genomes have been very informative about basic mechanisms of evolution, speciation, hybridization, domestication, as well as about the molecular machineries underlying them. They are also irreplaceable to investigate in detail the complex relationship between genotypes and phenotypes with both theoretical and practical implications. This review examines these questions at two distinct levels offered by the broad evolutionary range of yeasts: inside the best-studied Saccharomyces species complex, and across the entire and diversified subphylum of Saccharomycotina. While obviously revealing evolutionary histories at different scales, data converge to a remarkably coherent picture in which one can estimate the relative importance of intrinsic genome dynamics, including gene birth and loss, vs. horizontal genetic accidents in the making of populations. The facility with which novel yeast genomes can now be studied, combined with the already numerous available reference genomes, offer privileged perspectives to further examine these fundamental biological questions using yeasts both as eukaryotic models and as fungi of practical importance.
Collapse
Affiliation(s)
- Bernard A Dujon
- Department Genomes and Genetics, Institut Pasteur, Centre National de la Recherche Scientifique UMR3525, 75724-CEDEX15 Paris, France
- Université Pierre et Marie Curie UFR927, 75005 Paris, France
| | - Edward J Louis
- Centre for Genetic Architecture of Complex Traits, University of Leicester, LE1 7RH, United Kingdom
- Department of Genetics, University of Leicester, LE1 7RH, United Kingdom
| |
Collapse
|
8
|
Ambrosino L, Chiusano ML. Transcriptologs: A Transcriptome-Based Approach to Predict Orthology Relationships. Bioinform Biol Insights 2017; 11:1177932217690136. [PMID: 28469416 PMCID: PMC5348085 DOI: 10.1177/1177932217690136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/17/2016] [Indexed: 12/17/2022] Open
Abstract
The detection of orthologs is a key approach in genomics, useful to understand gene evolution and phylogenetic relationships and essential for gene function prediction. However, a reliable annotation of the encoded protein regions is still a limiting aspect in genomics, mainly due to the lack of confirmatory experimental evidence at proteome level. Nevertheless, the current ortholog collections are generally based on protein sequence comparisons, in addition to the availability of large transcriptome sequence collections. We developed Transcriptologs, a method for the prediction of orthologs based on similarities of translated fragments from messenger RNAs of 2 species. We implemented a procedure to extend BLAST-based alignments and to define orthologs based on the Bidirectional Best Hit approach. Results from a test case on Arabidopsis thaliana and Sorghum bicolor transcript collections revealed in some cases outperformance of Transcriptologs in comparison with a classical protein-based analysis in terms of alignment quality, revealing similarities otherwise not detectable.
Collapse
Affiliation(s)
- Luca Ambrosino
- Department of Agriculture, University of Naples "Federico II," Portici, Italy
| | - Maria Luisa Chiusano
- Department of Agriculture, University of Naples "Federico II," Portici, Italy.,Research Infrastructures for Marine Biological Resources (RIMAR), Stazione Zoologica Anton Dohrn Napoli, Naples, Italy
| |
Collapse
|
9
|
Vakirlis N, Sarilar V, Drillon G, Fleiss A, Agier N, Meyniel JP, Blanpain L, Carbone A, Devillers H, Dubois K, Gillet-Markowska A, Graziani S, Huu-Vang N, Poirel M, Reisser C, Schott J, Schacherer J, Lafontaine I, Llorente B, Neuvéglise C, Fischer G. Reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus. Genome Res 2016; 26:918-32. [PMID: 27247244 PMCID: PMC4937564 DOI: 10.1101/gr.204420.116] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/28/2016] [Indexed: 12/22/2022]
Abstract
Reconstructing genome history is complex but necessary to reveal quantitative principles governing genome evolution. Such reconstruction requires recapitulating into a single evolutionary framework the evolution of genome architecture and gene repertoire. Here, we reconstructed the genome history of the genus Lachancea that appeared to cover a continuous evolutionary range from closely related to more diverged yeast species. Our approach integrated the generation of a high-quality genome data set; the development of AnChro, a new algorithm for reconstructing ancestral genome architecture; and a comprehensive analysis of gene repertoire evolution. We found that the ancestral genome of the genus Lachancea contained eight chromosomes and about 5173 protein-coding genes. Moreover, we characterized 24 horizontal gene transfers and 159 putative gene creation events that punctuated species diversification. We retraced all chromosomal rearrangements, including gene losses, gene duplications, chromosomal inversions and translocations at single gene resolution. Gene duplications outnumbered losses and balanced rearrangements with 1503, 929, and 423 events, respectively. Gene content variations between extant species are mainly driven by differential gene losses, while gene duplications remained globally constant in all lineages. Remarkably, we discovered that balanced chromosomal rearrangements could be responsible for up to 14% of all gene losses by disrupting genes at their breakpoints. Finally, we found that nonsynonymous substitutions reached fixation at a coordinated pace with chromosomal inversions, translocations, and duplications, but not deletions. Overall, we provide a granular view of genome evolution within an entire eukaryotic genus, linking gene content, chromosome rearrangements, and protein divergence into a single evolutionary framework.
Collapse
Affiliation(s)
- Nikolaos Vakirlis
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Véronique Sarilar
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Guénola Drillon
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Aubin Fleiss
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Nicolas Agier
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Jean-Philippe Meyniel
- ISoft, Route de l'Orme, Parc "Les Algorithmes" Bâtiment Euclide, 91190 Saint-Aubin, France
| | - Lou Blanpain
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Alessandra Carbone
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Hugo Devillers
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Kenny Dubois
- CRCM, CNRS, UMR7258, Inserm, U1068; Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, F-13009, Marseille, France
| | - Alexandre Gillet-Markowska
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Stéphane Graziani
- ISoft, Route de l'Orme, Parc "Les Algorithmes" Bâtiment Euclide, 91190 Saint-Aubin, France
| | - Nguyen Huu-Vang
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Marion Poirel
- ISoft, Route de l'Orme, Parc "Les Algorithmes" Bâtiment Euclide, 91190 Saint-Aubin, France
| | - Cyrielle Reisser
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS, UMR 7156, 67083 Strasbourg, France
| | - Jonathan Schott
- CRCM, CNRS, UMR7258, Inserm, U1068; Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, F-13009, Marseille, France
| | - Joseph Schacherer
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS, UMR 7156, 67083 Strasbourg, France
| | - Ingrid Lafontaine
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Bertrand Llorente
- CRCM, CNRS, UMR7258, Inserm, U1068; Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, F-13009, Marseille, France
| | - Cécile Neuvéglise
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Gilles Fischer
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| |
Collapse
|
10
|
SynChro: a fast and easy tool to reconstruct and visualize synteny blocks along eukaryotic chromosomes. PLoS One 2014; 9:e92621. [PMID: 24651407 PMCID: PMC3961402 DOI: 10.1371/journal.pone.0092621] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/25/2014] [Indexed: 01/20/2023] Open
Abstract
Reconstructing synteny blocks is an essential step in comparative genomics studies. Different methods were already developed to answer various needs such as genome (re-)annotation, identification of duplicated regions and whole genome duplication events or estimation of rearrangement rates. We present SynChro, a tool that reconstructs synteny blocks between pairwise comparisons of multiple genomes. SynChro is based on a simple algorithm that computes Reciprocal Best-Hits (RBH) to reconstruct the backbones of the synteny blocks and then automatically completes these blocks with non-RBH syntenic homologs. This approach has two main advantages: (i) synteny block reconstruction is fast (feasible on a desk computer for large eukaryotic genomes such as human) and (ii) synteny block reconstruction is straightforward as all steps are integrated (no need to run Blast or TribeMCL prior to reconstruction) and there is only one parameter to set up, the synteny block stringency . Benchmarks on three pairwise comparisons of genomes, representing three different levels of synteny conservation (Human/Mouse, Human/Zebra Finch and Human/Zebrafish) show that Synchro runs faster and performs at least as well as two other commonly used and more sophisticated tools (MCScanX and i-ADHoRe). In addition, SynChro provides the user with a rich set of graphical outputs including dotplots, chromosome paintings and detailed synteny maps to visualize synteny blocks with all homology relationships and synteny breakpoints with all included genetic features. SynChro is freely available under the BSD license at http://www.lcqb.upmc.fr/CHROnicle/SynChro.html.
Collapse
|
11
|
Proux-Wéra E, Armisén D, Byrne KP, Wolfe KH. A pipeline for automated annotation of yeast genome sequences by a conserved-synteny approach. BMC Bioinformatics 2012; 13:237. [PMID: 22984983 PMCID: PMC3507789 DOI: 10.1186/1471-2105-13-237] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/17/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Yeasts are a model system for exploring eukaryotic genome evolution. Next-generation sequencing technologies are poised to vastly increase the number of yeast genome sequences, both from resequencing projects (population studies) and from de novo sequencing projects (new species). However, the annotation of genomes presents a major bottleneck for de novo projects, because it still relies on a process that is largely manual. RESULTS Here we present the Yeast Genome Annotation Pipeline (YGAP), an automated system designed specifically for new yeast genome sequences lacking transcriptome data. YGAP does automatic de novo annotation, exploiting homology and synteny information from other yeast species stored in the Yeast Gene Order Browser (YGOB) database. The basic premises underlying YGAP's approach are that data from other species already tells us what genes we should expect to find in any particular genomic region and that we should also expect that orthologous genes are likely to have similar intron/exon structures. Additionally, it is able to detect probable frameshift sequencing errors and can propose corrections for them. YGAP searches intelligently for introns, and detects tRNA genes and Ty-like elements. CONCLUSIONS In tests on Saccharomyces cerevisiae and on the genomes of Naumovozyma castellii and Tetrapisispora blattae newly sequenced with Roche-454 technology, YGAP outperformed another popular annotation program (AUGUSTUS). For S. cerevisiae and N. castellii, 91-93% of YGAP's predicted gene structures were identical to those in previous manually curated gene sets. YGAP has been implemented as a webserver with a user-friendly interface at http://wolfe.gen.tcd.ie/annotation.
Collapse
Affiliation(s)
- Estelle Proux-Wéra
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | |
Collapse
|