1
|
Ritonga FN, Gong Z, Zhang Y, Wang F, Gao J, Li C, Li J. Exploiting Brassica rapa L. subsp. pekinensis Genome Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:2823. [PMID: 39409693 PMCID: PMC11478547 DOI: 10.3390/plants13192823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024]
Abstract
Chinese cabbage, Brassica rapa L. subsp. pekinensis is a crucial and extensively consumed vegetable in the world, especially Eastern Asia. The market demand for this leafy vegetable increases year by year, resulting in multiple challenges for agricultural researchers worldwide. Multi-omic approaches and the integration of functional genomics helps us understand the relationships between Chinese cabbage genomes and phenotypes under specific physiological and environmental conditions. However, challenges exist in integrating multi-omics for the functional analysis of genes and for developing potential traits for Chinese cabbage improvement. However, the panomics platform allows for the integration of complex omics, enhancing our understanding of molecular regulator networks in Chinese cabbage agricultural traits. In addition, the agronomic features of Chinese cabbage are significantly impacted by the environment. The expression of these agricultural features is tightly regulated by a combination of signals from both the internal regulatory network and the external growth environment. To comprehend the molecular process of these characteristics, it is necessary to have a prior understanding of molecular breeding for the objective of enhancing quality. While the use of various approaches in Chinese cabbage is still in its early stages, recent research has shown that it has the potential to uncover new regulators both rapidly and effectively, leading to updated regulatory networks. In addition, the utilization of the efficient transformation technique in conjunction with gene editing using CRISPR/Cas9 will result in a reduction in time requirements and facilitate a more precise understanding of the role of the regulators. Numerous studies about Chinese cabbage have been conducted in the past two decades, but a comprehensive review about its genome still limited. This review provides a concise summary of the latest discoveries in genomic research related to Brassica and explores the potential future developments for this species.
Collapse
Affiliation(s)
- Faujiah Nurhasanah Ritonga
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.N.R.); (Y.Z.); (F.W.); (J.G.)
- Faculty of Forestry, Universitas Sumatera Utara, USU 2 Bekala Campus, Pancurbatu, Deli Serdang 20355, Indonesia
| | - Zeyu Gong
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan 250358, China;
| | - Yihui Zhang
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.N.R.); (Y.Z.); (F.W.); (J.G.)
| | - Fengde Wang
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.N.R.); (Y.Z.); (F.W.); (J.G.)
| | - Jianwei Gao
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.N.R.); (Y.Z.); (F.W.); (J.G.)
| | - Cheng Li
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.N.R.); (Y.Z.); (F.W.); (J.G.)
| | - Jingjuan Li
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (F.N.R.); (Y.Z.); (F.W.); (J.G.)
| |
Collapse
|
2
|
Zhang L, Meng S, Liu Y, Han F, Xu T, Zhao Z, Li Z. Advances in and Perspectives on Transgenic Technology and CRISPR-Cas9 Gene Editing in Broccoli. Genes (Basel) 2024; 15:668. [PMID: 38927604 PMCID: PMC11203320 DOI: 10.3390/genes15060668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Broccoli, a popular international Brassica oleracea crop, is an important export vegetable in China. Broccoli is not only rich in protein, vitamins, and minerals but also has anticancer and antiviral activities. Recently, an Agrobacterium-mediated transformation system has been established and optimized in broccoli, and transgenic transformation and CRISPR-Cas9 gene editing techniques have been applied to improve broccoli quality, postharvest shelf life, glucoraphanin accumulation, and disease and stress resistance, among other factors. The construction and application of genetic transformation technology systems have led to rapid development in broccoli worldwide, which is also good for functional gene identification of some potential traits in broccoli. This review comprehensively summarizes the progress in transgenic technology and CRISPR-Cas9 gene editing for broccoli over the past four decades. Moreover, it explores the potential for future integration of digital and smart technologies into genetic transformation processes, thus demonstrating the promise of even more sophisticated and targeted crop improvements. As the field continues to evolve, these innovations are expected to play a pivotal role in the sustainable production of broccoli and the enhancement of its nutritional and health benefits.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Sufang Meng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
| | - Yumei Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
| | - Fengqing Han
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
| | - Tiemin Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
- Shouguang R&D Center of Vegetables, CAAS, Shouguang 262700, China;
| | - Zhiwei Zhao
- Shouguang R&D Center of Vegetables, CAAS, Shouguang 262700, China;
| | - Zhansheng Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
- Shouguang R&D Center of Vegetables, CAAS, Shouguang 262700, China;
| |
Collapse
|
3
|
Schilbert HM, Pucker B, Ries D, Viehöver P, Micic Z, Dreyer F, Beckmann K, Wittkop B, Weisshaar B, Holtgräwe D. Mapping‑by‑Sequencing Reveals Genomic Regions Associated with Seed Quality Parameters in Brassica napus. Genes (Basel) 2022; 13:genes13071131. [PMID: 35885914 PMCID: PMC9317104 DOI: 10.3390/genes13071131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
Rapeseed (Brassica napus L.) is an important oil crop and has the potential to serve as a highly productive source of protein. This protein exhibits an excellent amino acid composition and has high nutritional value for humans. Seed protein content (SPC) and seed oil content (SOC) are two complex quantitative and polygenic traits which are negatively correlated and assumed to be controlled by additive and epistatic effects. A reduction in seed glucosinolate (GSL) content is desired as GSLs cause a stringent and bitter taste. The goal here was the identification of genomic intervals relevant for seed GSL content and SPC/SOC. Mapping by sequencing (MBS) revealed 30 and 15 new and known genomic intervals associated with seed GSL content and SPC/SOC, respectively. Within these intervals, we identified known but also so far unknown putatively causal genes and sequence variants. A 4 bp insertion in the MYB28 homolog on C09 shows a significant association with a reduction in seed GSL content. This study provides insights into the genetic architecture and potential mechanisms underlying seed quality traits, which will enhance future breeding approaches in B. napus.
Collapse
Affiliation(s)
- Hanna Marie Schilbert
- Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (H.M.S.); (B.P.); (D.R.); (P.V.); (B.W.)
- Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Faculty of Technology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Boas Pucker
- Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (H.M.S.); (B.P.); (D.R.); (P.V.); (B.W.)
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology & Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - David Ries
- Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (H.M.S.); (B.P.); (D.R.); (P.V.); (B.W.)
| | - Prisca Viehöver
- Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (H.M.S.); (B.P.); (D.R.); (P.V.); (B.W.)
| | - Zeljko Micic
- Deutsche Saatveredelung AG, Weissenburger Straße 5, 59557 Lippstadt, Germany;
| | - Felix Dreyer
- NPZ Innovation GmbH, Hohenlieth-Hof 1, 24363 Holtsee, Germany; (F.D.); (K.B.)
| | - Katrin Beckmann
- NPZ Innovation GmbH, Hohenlieth-Hof 1, 24363 Holtsee, Germany; (F.D.); (K.B.)
| | - Benjamin Wittkop
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany;
| | - Bernd Weisshaar
- Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (H.M.S.); (B.P.); (D.R.); (P.V.); (B.W.)
| | - Daniela Holtgräwe
- Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; (H.M.S.); (B.P.); (D.R.); (P.V.); (B.W.)
- Correspondence:
| |
Collapse
|
4
|
Zhan X, Chen Z, Chen R, Shen C. Environmental and Genetic Factors Involved in Plant Protection-Associated Secondary Metabolite Biosynthesis Pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:877304. [PMID: 35463424 PMCID: PMC9024250 DOI: 10.3389/fpls.2022.877304] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 05/09/2023]
Abstract
Plant specialized metabolites (PSMs) play essential roles in the adaptation to harsh environments and function in plant defense responses. PSMs act as key components of defense-related signaling pathways and trigger the extensive expression of defense-related genes. In addition, PSMs serve as antioxidants, participating in the scavenging of rapidly rising reactive oxygen species, and as chelators, participating in the chelation of toxins under stress conditions. PSMs include nitrogen-containing chemical compounds, terpenoids/isoprenoids, and phenolics. Each category of secondary metabolites has a specific biosynthetic pathway, including precursors, intermediates, and end products. The basic biosynthetic pathways of representative PSMs are summarized, providing potential target enzymes of stress-mediated regulation and responses. Multiple metabolic pathways share the same origin, and the common enzymes are frequently to be the targets of metabolic regulation. Most biosynthetic pathways are controlled by different environmental and genetic factors. Here, we summarized the effects of environmental factors, including abiotic and biotic stresses, on PSM biosynthesis in various plants. We also discuss the positive and negative transcription factors involved in various PSM biosynthetic pathways. The potential target genes of the stress-related transcription factors were also summarized. We further found that the downstream targets of these Transcription factors (TFs) are frequently enriched in the synthesis pathway of precursors, suggesting an effective role of precursors in enhancing of terminal products. The present review provides valuable insights regarding screening targets and regulators involved in PSM-mediated plant protection in non-model plants.
Collapse
Affiliation(s)
- Xiaori Zhan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Zhehao Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Rong Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
5
|
Abstract
Broccoli (Brassica oleracea L. var. italica) is one of the most important vegetable crops cultivated worldwide. The market demand for broccoli is still increasing due to its richness in vitamins, anthocyanins, mineral substances, fiber, secondary metabolites and other nutrients. The famous secondary metabolites, glucosinolates, sulforaphane and selenium have protective effects against cancer. Significant progress has been made in fine-mapping and cloning genes that are responsible for important traits; this progress provides a foundation for marker-assisted selection (MAS) in broccoli breeding. Genetic engineering by the well-developed Agrobacterium tumefaciens-mediated transformation in broccoli has contributed to the improvement of quality; postharvest life; glucosinolate and sulforaphane content; and resistance to insects, pathogens and abiotic stresses. Here, we review recent progress in the genetics and molecular breeding of broccoli. Future perspectives for improving broccoli are also briefly discussed.
Collapse
|
6
|
Yin L, Chen H, Cao B, Lei J, Chen G. Molecular Characterization of MYB28 Involved in Aliphatic Glucosinolate Biosynthesis in Chinese Kale ( Brassica oleracea var. alboglabra Bailey). FRONTIERS IN PLANT SCIENCE 2017; 8:1083. [PMID: 28680435 PMCID: PMC5478679 DOI: 10.3389/fpls.2017.01083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/06/2017] [Indexed: 05/25/2023]
Abstract
Glucosinolates are Brassicaceae-specific secondary metabolites that act as crop protectants, flavor precursors, and cancer-prevention agents, which shows strong evidences of anticarcinogentic, antioxidant, and antimicrobial activities. MYB28, the R2R3-MYB28 transcription factor, directly activates genes involved in aliphatic glucosinolate biosynthesis. In this study, the MYB28 homology (BoaMYB28) was identified in Chinese kale (Brassica oleracea var. alboglabra Bailey). Analysis of the nucleotide sequence indicated that the cDNA of BoaMYB28 was 1257 bp with an ORF of 1020 bp. The deduced BoaMYB28 protein was a polypeptide of 339 amino acid with a putative molecular mass of 38 kDa and a pI of 6.87. Sequence homology and phylogenetic analysis showed that BoaMYB28 was most closely related to MYB28 homologs from the Brassicaceae family. The expression levels of BoaMYB28 varies across the tissues and developmental stages. BoaMYB28 transcript levels were higher in leaves and stems compared with those in cotyledons, flowers, and siliques. BoaMYB28 was expressed across all developmental leaf stages, with higher transcript accumulation in mature and inflorescence leaves. Over-expression and RNAi studies showed that BoaMYB28 retains the basic MYB28 gene function as a major transcriptional regulator of aliphatic glucosinolate pathway. The results indicated that over-expression and RNAi lines showed no visible difference on plant morphology. The contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes increased in over-expression lines and decreased in RNAi lines. In over-expression lines, aliphatic glucosinolate contents were 1.5- to 3-fold higher than those in the wild-type, while expression levels of aliphatic glucosinolate biosynthesis genes were 1.5- to 4-fold higher than those in the wild-type. In contrast, the contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes in RNAi lines were considerably lower than those in the wild-type. The results suggest that BoaMYB28 has the potential to alter the aliphatic glucosinolates contents in Chinese kale at the genetic level.
Collapse
Affiliation(s)
- Ling Yin
- College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Hancai Chen
- Vegetable Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
| | - Bihao Cao
- College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Jianjun Lei
- College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Guoju Chen
- College of Horticulture, South China Agricultural UniversityGuangzhou, China
| |
Collapse
|
7
|
|
8
|
Augustine R, Bisht NC. Regulation of Glucosinolate Metabolism: From Model Plant Arabidopsis thaliana to Brassica Crops. REFERENCE SERIES IN PHYTOCHEMISTRY 2017. [DOI: 10.1007/978-3-319-25462-3_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|