1
|
Browne DJ, Kelly AM, Brady JL, Doolan DL. A high-throughput screening RT-qPCR assay for quantifying surrogate markers of immunity from PBMCs. Front Immunol 2022; 13:962220. [PMID: 36110843 PMCID: PMC9469018 DOI: 10.3389/fimmu.2022.962220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Immunoassays that quantitate cytokines and other surrogate markers of immunity from peripheral blood mononuclear cells (PBMCs), such as flow cytometry or Enzyme-Linked Immunosorbent Spot (ELIspot), allow highly sensitive measurements of immune effector function. However, those assays consume relatively high numbers of cells and expensive reagents, precluding comprehensive analyses and high-throughput screening (HTS). To address this issue, we developed a sensitive and specific reverse transcription-quantitative PCR (RT-qPCR)-based HTS assay, specifically designed to quantify surrogate markers of immunity from very low numbers of PBMCs. We systematically evaluated the volumes and concentrations of critical reagents within the RT-qPCR protocol, miniaturizing the assay and ultimately reducing the cost by almost 90% compared to current standard practice. We assessed the suitability of this cost-optimized RT-qPCR protocol as an HTS tool and determined the assay exceeds HTS uniformity and signal variance testing standards. Furthermore, we demonstrate this technique can effectively delineate a hierarchy of responses from as little as 50,000 PBMCs stimulated with CD4+ or CD8+ T cell peptide epitopes. Finally, we establish that this HTS-optimized protocol has single-cell analytical sensitivity and a diagnostic sensitivity equivalent to detecting 1:10,000 responding cells (i.e., 100 Spot Forming Cells/106 PBMCs by ELIspot) with over 90% accuracy. We anticipate this assay will have widespread applicability in preclinical and clinical studies, especially when samples are limited, and cost is an important consideration.
Collapse
|
2
|
Xu Y, Zou Q, Gao F, Wang D, Xue S, Lin H, Guo H, He X, Yang H, Gao D. Effect of Warming Process on the Survival of Cryopreserved Human Peripheral Blood Mononuclear Cells. Biopreserv Biobank 2021; 19:318-323. [PMID: 34061624 DOI: 10.1089/bio.2020.0058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is well known that the warming process is a critical step in cell cryopreservation, affecting the survival rate of the cryopreserved cells. However, there is a lack of understanding and optimization of the warming process for the cryopreserved human peripheral blood mononuclear cells (PBMCs) that are greatly needed for the cellular/immune therapies worldwide. In this study, the effect of the warming process on cryosurvival of the PBMCs was investigated, resulting in a recommendation of an optimal warming method. In the experiments, all PBMC samples were cooled by a fixed slow cooling process and stored in a liquid nitrogen tank. The frozen samples were then warmed in water baths with stirring at various temperatures, 37°C, 42°C, and 65°C, respectively. After thawing, PBMC's viability as well as phenotypic and functional analyses were performed and evaluated. It was shown that a relatively rapid warming process at 65°C in a water bath with stirring generated a significant improvement of cell viability, recovery, and functionality of the cryopreserved PBMCs. In addition, interferon-γ and interleukin-2 secretion were much higher in PBMCs thawed at 65°C than that in 42°C and 37°C, respectively. This study suggests that a rapid warming process at 65°C in a water bath should be used to replace the current conventional warming approach at 37°C.
Collapse
Affiliation(s)
- Yanhong Xu
- Department of Technology R&D, Origincell Technology Group, Shanghai, P.R. China.,Department of Engineering Technology Research Center of Cell Therapy and Clinical Translation. Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Qiongna Zou
- Department of Technology R&D, Origincell Technology Group, Shanghai, P.R. China
| | - Frankliu Gao
- Department of School of Public Affairs, University of Science and Technology of China, Hefei, P.R. China
| | - Daimeng Wang
- Department of Technology R&D, Origincell Technology Group, Shanghai, P.R. China
| | - Suxia Xue
- Department of Technology R&D, Origincell Technology Group, Shanghai, P.R. China
| | - Hebei Lin
- Department of Technology R&D, Origincell Technology Group, Shanghai, P.R. China
| | - Hao Guo
- Department of Technology R&D, Origincell Technology Group, Shanghai, P.R. China
| | - Xiaowen He
- Department of Technology R&D, Origincell Technology Group, Shanghai, P.R. China
| | - Huanfeng Yang
- Department of Technology R&D, Origincell Technology Group, Shanghai, P.R. China.,Department of School of Life Sciences and Technology, Tongji University, Shanghai, P.R. China
| | - Dayong Gao
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Blackwell AD, Garcia AR, Keivanfar RL, Bay S. A field method for cryopreservation of whole blood from a finger prick for later analysis with flow cytometry. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 174:670-685. [PMID: 33595836 DOI: 10.1002/ajpa.24251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/06/2021] [Accepted: 01/29/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Flow cytometry is a powerful tool for investigating immune function, allowing for the quantification of leukocytes by subtype. Yet it has not been used extensively for field work due to perishable reagents and the need for immediate analysis of samples. To make flow cytometry more accessible, we devise and evaluate a field protocol for freezing capillary blood. MATERIALS AND METHODS We collected finger prick blood samples from 110 volunteers, age 18 to 42. Blood samples were analyzed immediately for 18 cell surface markers. Aliquots of whole blood were frozen in the vapor phase of a liquid nitrogen tank with 10% dimethyl sulfoxide in medium. Samples were analyzed on a Guava EasyCyte HT flow cytometer after 2, 4, or 14 weeks. RESULTS Major lymphocyte fractions in frozen samples were correlated with fresh values (T-cells: r = 0.82; Natural Killer [NK] cells: r = 0.64; CD4: r = 0.67; CD8: r = 0.82; Naïve CD4: r = 0.73, Naïve CD8: r = 0.71; B-cells: r = 0.73; all p < 0.001), and mean values were similar to those from fresh samples. However, correlations for smaller subsets of CD4 and B cells were generally poor. Some differences resulted from changes in non-specific binding for some antibody-conjugate pairs. Cryopreservation also resulted in a reduction in granulocytes more than lymphocytes. DISCUSSION Our results suggest that antibody/fluorochrome combinations should be validated before use on frozen samples, and that functional changes in cells may affect some cell markers. However, this simple freezing protocol utilizing finger pricks, whole blood, and a liquid nitrogen shipping tank is viable for obtaining samples for flow cytometry under field conditions.
Collapse
Affiliation(s)
- Aaron D Blackwell
- Department of Anthropology, Washington State University, Pullman, Washington, USA.,Department of Anthropology, University of California, Santa Barbara, California, USA
| | - Angela R Garcia
- Department of Anthropology, University of California, Santa Barbara, California, USA.,Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
| | - Ryan L Keivanfar
- Department of Anthropology, University of California, Santa Barbara, California, USA.,Center for Computational Biology, University of California, Berkeley, California, USA
| | - Sarah Bay
- Department of Anthropology, University of California, Santa Barbara, California, USA
| |
Collapse
|
4
|
Understanding the freezing responses of T cells and other subsets of human peripheral blood mononuclear cells using DSMO-free cryoprotectants. Cytotherapy 2020; 22:291-300. [PMID: 32220549 DOI: 10.1016/j.jcyt.2020.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND This study examined the freezing responses of peripheral blood mononuclear cells (PBMCs) and specific white blood cell subsets contained therein when cryopreserved in three combinations of osmolytes composed of sugars, sugar alcohols and amino acids. METHODS A differential evolution algorithm with multiple objectives was used to optimize cryoprotectant composition and thus the post-thaw recoveries for both helper and cytotoxicity T cells simultaneously. RESULTS The screening of various formulations using a differential evolution algorithm showed post-thaw recoveries greater than 80% for the two subsets of T cells. The phenotypes and viabilities of PBMC subsets were characterized using flow cytometry. Significant differences between the post-thaw recovery for helper T cells and cytotoxic T cells were observed. Statistical models were used to analyze the importance of individual osmolytes and interactions between post-thaw recoveries of three subsets of T cell including helper T cells, cytotoxic T cells and natural killer T cells. The statistical model indicated that the preferred concentration levels of osmolytes and interaction modes were distinct between the three subsets studied. PBMCs were cultured for 72 h post-thaw to determine the stability of the cells. Because post-thaw apoptosis is a significant concern for lymphocytes, apoptosis of helper T cell and cytotoxic T cells frozen in a DMSO-free cryoprotectant was analyzed immediately post-thaw and 24 h post-thaw. Both cell types showed a decrease in cell viability 24 h post-thaw compared with immediately post-thaw. Helper T cell viability dropped 17%, and cytotoxic T cells had a 10% drop in viability. Immediately post-thaw, both cell types had >30% of cells in early apoptosis, but after 24 h the number of cells in early apoptosis decreased to below 20%. CONCLUSION This study helped us identify the freezing responses of different human PBMC subsets using combinations of osmolytes.
Collapse
|
5
|
Ortega-Pinazo J, Díaz T, Martínez B, Jiménez A, Pinto-Medel MJ, Ferro P. Quality assessment on the long-term cryopreservation and nucleic acids extraction processes implemented in the andalusian public biobank. Cell Tissue Bank 2019; 20:255-265. [PMID: 30903409 DOI: 10.1007/s10561-019-09764-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
Abstract
Human samples are commonly collected and long-term stored in biobanks for current and future analyses. Even though techniques for freezing human blood are well established, the storage time can compromise the cell viability as well as the yield and quality of nucleic acids (RNA and DNA) extracted from them. In this study, a protocol to obtain peripheral blood mononuclear cells (PBMCs) from 70 subjects, which were stored at - 196 °C from EDTA tubes for a long-term, was assessed. In parallel; a protocol to obtain DNA from the same subjects, which were stored at - 80 °C from citrate tubes, was also studied. Samples stored from 2008 to 2012 were studied and the results obtained showed that there were no statistically significant differences in the RNA or DNA extracted in terms of purity, integrity and functionality The freezing protocol used by the Málaga Biobank shows that viable PBMCs and DNA could be kept for a period of, at least, 10 years, with a high quality and performance. Furthermore, RNA extracted from these PBMCs presents also a good quality and performance. Therefore, the samples frozen according to the conditions of the protocols assessed in this study could be optimal for biomedical research.
Collapse
Affiliation(s)
- J Ortega-Pinazo
- Neuroscience UGC, Instituto de Investigación Biomédica de Málaga (IBIMA), Sanitary Distric of Málaga, University of Málaga, Málaga, Spain
| | - T Díaz
- Andalusian Public Health System Biobank, Instituto de Investigación Biomédica de Málaga (IBIMA), Sanitary Distric of Málaga, University of Málaga, Málaga, Spain
| | - B Martínez
- Andalusian Public Health System Biobank, Instituto de Investigación Biomédica de Málaga (IBIMA), Sanitary Distric of Málaga, University of Málaga, Málaga, Spain
| | - A Jiménez
- Andalusian Public Health System Biobank, Instituto de Investigación Biomédica de Málaga (IBIMA), Sanitary Distric of Málaga, University of Málaga, Málaga, Spain
| | - M J Pinto-Medel
- Neuroscience UGC, Instituto de Investigación Biomédica de Málaga (IBIMA), Sanitary Distric of Málaga, University of Málaga, Málaga, Spain
| | - P Ferro
- Andalusian Public Health System Biobank, Instituto de Investigación Biomédica de Málaga (IBIMA), Sanitary Distric of Málaga, University of Málaga, Málaga, Spain.
| |
Collapse
|
6
|
The Impact of Varying Cooling and Thawing Rates on the Quality of Cryopreserved Human Peripheral Blood T Cells. Sci Rep 2019; 9:3417. [PMID: 30833714 PMCID: PMC6399228 DOI: 10.1038/s41598-019-39957-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/06/2019] [Indexed: 12/11/2022] Open
Abstract
For the clinical delivery of immunotherapies it is anticipated that cells will be cryopreserved and shipped to the patient where they will be thawed and administered. An established view in cellular cryopreservation is that following freezing, cells must be warmed rapidly (≤5 minutes) in order to maintain high viability. In this study we examine the interaction between the rate of cooling and rate of warming on the viability, and function of T cells formulated in a conventional DMSO based cryoprotectant and processed in conventional cryovials. The data obtained show that provided the cooling rate is -1 °C min-1 or slower, there is effectively no impact of warming rate on viable cell number within the range of warming rates examined (1.6 °C min-1 to 113 °C min-1). It is only following a rapid rate of cooling (-10 °C min-1) that a reduction in viable cell number is observed following slow rates of warming (1.6 °C min-1 and 6.2 °C min-1), but not rapid rates of warming (113 °C min-1 and 45 °C min-1). Cryomicroscopy studies revealed that this loss of viability is correlated with changes in the ice crystal structure during warming. At high cooling rates (-10 °C min-1) the ice structure appeared highly amorphous, and when subsequently thawed at slow rates (6.2 °C min-1 and below) ice recrystallization was observed during thaw suggesting mechanical disruption of the frozen cells. This data provides a fascinating insight into the crystal structure dependent behaviour during phase change of frozen cell therapies and its effect on live cell suspensions. Furthermore, it provides an operating envelope for the cryopreservation of T cells as an emerging industry defines formulation volumes and cryocontainers for immunotherapy products.
Collapse
|
7
|
Abstract
Especially in the field of autologous transplantation, it has been found necessary to develop methods that ensure long-term storage with maintenance of functionality of the cells to bridge the therapy-related temporal separation of collection and application.Based on the experiences of more than 40 years, some practical considerations, especially regarding the cell concentration, final volume, and possibly other exogenous substances, should be considered when establishing a protocol for the routine cryopreservation of peripheral blood stem cells. In the following chapter, we describe a freezing protocol for cryopreservation of peripheral blood stem cells which was used and optimized over the past 8 years and was applied to the cryopreservation of more than 2000 peripheral stem cell transplants.
Collapse
Affiliation(s)
- Petra Pavel
- Stem Cell Laboratory, Institute of Clinical Transfusion Medicine and Cell Therapy Heidelberg GmbH, Heidelberg, Germany.
| | - Sascha Laier
- Stem Cell Laboratory, Institute of Clinical Transfusion Medicine and Cell Therapy Heidelberg GmbH, Heidelberg, Germany
| |
Collapse
|
8
|
Consuegra I, Rodríguez-Aierbe C, Santiuste I, Bosch A, Martínez-Marín R, Fortuto MA, Díaz T, Martí S, Muñoz-Fernández MÁ. Isolation Methods of Peripheral Blood Mononuclear Cells in Spanish Biobanks: An Overview. Biopreserv Biobank 2017; 15:305-309. [DOI: 10.1089/bio.2016.0105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Irene Consuegra
- Spanish HIV HGM BioBank, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | | | - Inés Santiuste
- Instituto de Investigación Marqués de Valdecilla, Biobanco Valdecilla, Santander, Spain
| | - Anna Bosch
- Biobanco Hospital Clínic–IDIBAPS, Institut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS, Barcelona, Spain
| | | | - M Antonia Fortuto
- Clínica Universidad de Navarra, Biobanco de la Universidad de Navarra, Pamplona, Spain
| | - Tatiana Díaz
- Hospital Regional Universitario Carlos Haya, Málaga, Spain
| | - Salvador Martí
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER BIOBANK, Valencia, Spain
| | - M Ángeles Muñoz-Fernández
- Spanish HIV HGM BioBank, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
9
|
Germann A, Oh YJ, Schmidt T, Schön U, Zimmermann H, von Briesen H. Temperature fluctuations during deep temperature cryopreservation reduce PBMC recovery, viability and T-cell function. Cryobiology 2013; 67:193-200. [PMID: 23850825 DOI: 10.1016/j.cryobiol.2013.06.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/24/2013] [Accepted: 06/26/2013] [Indexed: 10/26/2022]
Abstract
The ability to analyze cryopreserved peripheral blood mononuclear cell (PBMC) from biobanks for antigen-specific immunity is necessary to evaluate response to immune-based therapies. To ensure comparable assay results, collaborative research in multicenter trials needs reliable and reproducible cryopreservation that maintains cell viability and functionality. A standardized cryopreservation procedure is comprised of not only sample collection, preparation and freezing but also low temperature storage in liquid nitrogen without any temperature fluctuations, to avoid cell damage. Therefore, we have developed a storage approach to minimize suboptimal storage conditions in order to maximize cell viability, recovery and T-cell functionality. We compared the influence of repeated temperature fluctuations on cell health from sample storage, sample sorting and removal in comparison to sample storage without temperature rises. We found that cyclical temperature shifts during low temperature storage reduce cell viability, recovery and immune response against specific-antigens. We showed that samples handled under a protective hood system, to avoid or minimize such repeated temperature rises, have comparable cell viability and cell recovery rates to samples stored without any temperature fluctuations. Also T-cell functionality could be considerably increased with the use of the protective hood system compared to sample handling without such a protection system. This data suggests that the impact of temperature fluctuation on cell integrity should be carefully considered in future clinical vaccine trials and consideration should be given to optimal sample storage conditions.
Collapse
Affiliation(s)
- Anja Germann
- (a)Fraunhofer Institute for Biomedical Engineering, Ensheimerstr. 48, 66386 St. Ingbert, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Vissers YM, Wichers HJ, Savelkoul HFJ. Influence of Food Processing, Digestion and the Food Matrix on Allergenicity & Cellular Measures of Allergenicity. MULTIDISCIPLINARY APPROACHES TO ALLERGIES 2012. [DOI: 10.1007/978-3-642-31609-8_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Radke L, López Hemmerling DA, Lubitz A, Giese C, Frohme M. Induced cytokine response of human PMBC-cultures: correlation of gene expression and secretion profiling and the effect of cryopreservation. Cell Immunol 2011; 272:144-53. [PMID: 22082568 DOI: 10.1016/j.cellimm.2011.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 09/08/2011] [Accepted: 10/17/2011] [Indexed: 01/22/2023]
Abstract
The immune system is regulated by the complex interaction of multiple cytokines, which are secreted signaling molecules affecting other cells. In this work, we studied the cytokine response to several well-known stimulants, such as OKT-3, Con A, PWM, and SEB. Healthy donor cells (PBMCs) were cultivated for up to 72 h and the mRNA levels and cytokine release of four key cytokines (IL-2, IL-4, IFN-γ, and TNF-α) were analyzed by RT-PCR and bead-based multiplex analyses. The generated cytokine profiles showed characteristic expression patterns and secretion kinetics for each cytokine and substance. PWM/SEB and OKT-3 led to a very fast and long-lasting immune response, whereas Con A induced the slowest cytokine production. Cytokine concentrations also differed greatly. The highest IFN-γ concentration was 1000 times higher than the respective IL-4 concentration. Gene expression and cytokine concentration profiles were strongly correlated during the time course. The chronological response of the donors' cytokine profiles coincided, but showed individual characteristics regarding the strength of the cytokine release. The comparison of stimulation experiments using freshly isolated and cryopreserved PBMCs showed that, for the observation of an immunological response at early points in time, gene expression experiments are more reliable than the measurement of cytokines in the cell culture supernatant. However, the freezing of cells influences the response significantly. The measurement of secreted proteins is the superior method at later points in time.
Collapse
Affiliation(s)
- Lars Radke
- Technische Hochschule Wildau (FH), Bahnhofstr. 1, 15745 Wildau, Germany.
| | | | | | | | | |
Collapse
|
12
|
Germann A, Schulz JC, Kemp-Kamke B, Zimmermann H, von Briesen H. Standardized Serum-Free Cryomedia Maintain Peripheral Blood Mononuclear Cell Viability, Recovery, and Antigen-Specific T-Cell Response Compared to Fetal Calf Serum-Based Medium. Biopreserv Biobank 2011; 9:229-236. [PMID: 21977240 DOI: 10.1089/bio.2010.0033] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/26/2011] [Indexed: 10/17/2022] Open
Abstract
The ability to analyze cryopreserved peripheral blood mononuclear cells (PBMCs) from biobanks for antigen-specific T-cell immunity is necessary to evaluate responses to immune-based therapies. Comprehensive studies have demonstrated that the quality of frozen PBMCs is critical and the maintenance of cell viability and functionality by using appropriate cryopreservation techniques is a key to the successful outcome of assays using PBMCs. Different cryomedia additives affect cell viability. The most common additive is fetal calf serum (FCS), although it is widely known that each FCS lot has to be tested before usage to prevent nonspecific stimulation of T-cells. Also, shipping of samples containing FCS is critical because of many import restrictions. Often, dimethyl sulfoxide (DMSO) is added as a cryoprotectant. However, DMSO concentration has to be reduced significantly because of its toxic effect on cells at room temperature. Therefore, we have developed freezing approaches to minimize cytotoxicity of cryoprotectants and maintain T-cell functionality. We compared different additives to the widely used FCS and found bovine serum albumin fraction V to be an appropriate substitute for the potentially immune-modulating FCS. We also found that DMSO concentration can be reduced by the addition of hydroxyethyl starch. Using our serum-free cryomedia, the PBMC recovery was more than 83% and the PBMC viability was more than 98%. Also, the T-cell functionality measured by enzyme-linked immunospot (ELISpot) was optimal after cryopreservation with our new cryomedia. On the basis of our experimental results, we could finally design 2 different, fully working cryomedia that are standardized, serum free, and manufactured under GMP conditions.
Collapse
|
13
|
Comparison of immunologic assays for detecting immune responses in HIV immunotherapeutic studies: AIDS Clinical Trials Group Trial A5181. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1452-9. [PMID: 20631337 DOI: 10.1128/cvi.00498-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study was designed to evaluate which of several T-cell-specific, immune response assays are the most relevant in measuring the key characteristics of an effective immune response to HIV-1. Using 5 HIV-1 antigens as stimulants, we assessed lymphocyte proliferation, supernatant gamma interferon (IFN-gamma) cytokine production (CP), single-cell IFN-gamma production by enzyme-linked immunospot (ELISPOT) assay, with and without Epstein-Barr virus-transformed B-lymphoblastoid cell lines (B-LCLs), and intracellular cytokine production (ICC) for IFN-gamma and interleukin 2 (IL-2) by flow cytometry. We used these to compare specimens from HIV-1-infected subjects who were virally suppressed with a stable antiretroviral therapy (ART) regimen (group A) with specimens from subjects not on ART but with HIV-1 viremia of <3,000 copies/ml (group B). The lymphocyte proliferation assay (LPA) did not significantly differentiate between the two groups. Using fresh peripheral blood mononuclear cells (PBMCs), the CP and ELISPOT assays for IFN-gamma detected the greatest differences between the two groups, specific for three of the five HIV-1 antigens, whereas significant differences were seen only in response to one antigen when cryopreserved cells were used. The strongest correlations were seen between the CP and ELISPOT assays. The ELISPOT B-LCL assay showed a cell concentration-dependent increase in IFN-gamma production compared to that shown by the standard ELISPOT assay but did not differentiate between the groups. In the ICC assay, greater numbers of IFN-gamma-producing T cells were seen in group B, and little or no detectable IL-2 production was seen in both groups. These studies highlight complexities of immunologic monitoring of T-cell responses in multisite clinical trials in HIV infection and outline considerations for optimizing these efforts.
Collapse
|
14
|
Yannelli JR. Generation and characterization of non-small-cell lung cancer cell lines and clones for use in the study of immunotherapy. Cancer Biother Radiopharm 2010; 25:269-78. [PMID: 20578832 DOI: 10.1089/cbr.2010.0766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The in vitro study of cancer has been made easier by the use of stable tumor cell (TC) lines derived from patients to study antigen expression, immunogenicity, and response to both experimental and conventional therapeutic agents. However, the routine generation of these cell lines in some tumor histologies such as non-small-cell lung cancer (NSCLC) is difficult. In many cases, colonies of TCs do not survive, most likely due to a lack of critical growth factors in cell culture medium. Other times, TC colonies are overgrown by fibroblasts, which appear to have less stringent growth requirements. In some cases, cultures are overgrown by bacteria or mold contained in the biopsy arriving from the surgical or pathology suite. This study presents the characteristics of three new NSCLC cell lines and associated autologous clones generated from both adenocarcinoma and squamous cell carcinoma tissue. Different culture media and variable techniques were used to generate these stable TC lines. Limiting dilution analysis resulted in numerous clones, some of which displayed heterogeneity in terms of growth, antigen expression, and the ability to release cytokines. The successes and failures associated with generating TC lines are discussed in this article. Both parental cultures and related clones serve as critical reagents for the continued study of the cellular immune response to NSCLC.
Collapse
Affiliation(s)
- John R Yannelli
- Department of Microbiology, Immunology and Molecular Genetics, Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
15
|
Li X, Zhong Z, Liang S, Wang X, Zhong F. Effect of cryopreservation on IL-4, IFNgamma and IL-6 production of porcine peripheral blood lymphocytes. Cryobiology 2009; 59:322-6. [PMID: 19766617 DOI: 10.1016/j.cryobiol.2009.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 09/02/2009] [Accepted: 09/10/2009] [Indexed: 10/20/2022]
Abstract
Cryopreservation of animal or human peripheral blood mononuclear cells (PBMC) is a commonly used technique. Effects of cryopreservation on functional capacity, especially the cytokine production of human PBMCs, have been extensively defined. However, certain animals, such as livestock, are a shortage of these information. Here we investigated the effects of cryopreservation on cytokine (IL-4, IFNgamma and IL-6) production of porcine PBMC. The porcine PBMCs were cryopreserved at -196 degrees C for a variety time periods for 2, 5, 25 and 50 days. Viability and cytokine production of the porcine PBMCs were measured before and after cryopreservation. The results showed that about 90% cell recovery rate was obtained at each storage time, indicating that about 10% loss of PBMCs in this short-term cryopreservation was due to the freezing process rather than the duration of cryopreservation. The fresh or frozen resting porcine PBMCs produced little cytokines in the absence of stimulation. However, three cytokines were apparently increased after PMA stimulation in both fresh and frozen porcine PBMCs. The sensitivity of frozen cells to PMA simulation for IFNgamma and IL-6 production was different from that of the fresh ones. IFNgamma production from the frozen PBMCs was significantly higher than that from the fresh ones (P<0.01). In contrast, IL-6 level from the frozen sample was significantly lower than that from the fresh one (P<0.05). Those results indicate that cryopreservation can increase the sensitivity of porcine PBMCs stimulated by PMA for IFNgamma production but not for IL-6 production. There was no significant difference of IL-4 production between fresh and frozen cells either stimulated (P>0.05) or un-stimulated (P>0.05).
Collapse
Affiliation(s)
- Xiujin Li
- Dept. of Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | | | | | | | | |
Collapse
|
16
|
Heo YJ, Son CH, Chung JS, Park YS, Son JH. The cryopreservation of high concentrated PBMC for dendritic cell (DC)-based cancer immunotherapy. Cryobiology 2009; 58:203-9. [DOI: 10.1016/j.cryobiol.2008.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 12/04/2008] [Accepted: 12/05/2008] [Indexed: 12/31/2022]
|