1
|
Arte KS, Chen M, Patil CD, Huang Y, Qu L, Zhou Q. Recent advances in drying and development of solid formulations for stable mRNA and siRNA lipid nanoparticles. J Pharm Sci 2024:S0022-3549(24)00606-3. [PMID: 39694272 DOI: 10.1016/j.xphs.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024]
Abstract
Current RNA lipid nanoparticle (LNP) based products are typically liquid formulations that require ultra-cold storage temperatures for stability. To address this limitation, recent efforts have focused on enhancing stability and enabling room temperature storage by converting these formulations into solid forms through drying processes such as lyophilization, spray drying, and spray-freeze drying. Nevertheless, the drying process itself can influence the stability of RNA/LNP formulations. Therefore, understanding the factors that contribute to instability during drying is essential. The choice of drying technique for LNPs depends on factors such as the mode of delivery, lipid components, and desired final product characteristics. Additionally, the drying mechanism and associated stresses must also be carefully considered. Drying methods involve a range of process parameters related to formulation, process settings, and the manufacturing environment. It is essential to understand how these parameters influence the final solid-state products' attributes, including appearance, moisture content, flow properties, and reconstitution time, as these can significantly affect the physical and chemical stability of the formulation. This review focuses on various drying techniques and their impact on the stability of RNA/LNP-based systems.
Collapse
Affiliation(s)
- Kinnari Santosh Arte
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Manlin Chen
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Chanakya D Patil
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Yijing Huang
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Li Qu
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.
| | - Qi Zhou
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
2
|
Biscaia-Caleiras M, Fonseca NA, Lourenço AS, Moreira JN, Simões S. Rational formulation and industrial manufacturing of lipid-based complex injectables: Landmarks and trends. J Control Release 2024; 373:617-639. [PMID: 39002799 DOI: 10.1016/j.jconrel.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Lipid-based complex injectables are renowned for their effectiveness in delivering drugs, with many approved products. While significant strides have been made in formulating nanosystems for small molecular weight drugs, a pivotal breakthrough emerged with the recognition of lipid nanoparticles as a promising platform for delivering nucleic acids. This finding has paved the way for tackling long-standing challenges in molecular and delivery aspects (e.g., mRNA stability, intracellular delivery) that have impeded the clinical translation of gene therapy, especially in the realm of immunotherapy. Nonetheless, developing and implementing new lipid-based delivery systems pose significant challenges, as industrial manufacturing of these formulations often involves complex, multi-batch processes, giving rise to issues related to scalability, stability, sterility, and regulatory compliance. To overcome these obstacles, embracing the principles of quality-by-design (QbD) is imperative. Furthermore, adopting cutting-edge manufacturing and process analytical tools (PAT) that facilitate the transition from batch to continuous production is essential. Herein, the key milestones and insights derived from the development of currently approved lipid- nanosystems will be explored. Additionally, a comprehensive and critical overview of the latest technologies and regulatory guidelines that underpin the creation of more efficient, scalable, and flexible manufacturing processes for complex lipid-based nanoformulations will be provided.
Collapse
Affiliation(s)
- Mariana Biscaia-Caleiras
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal; Bluepharma-Indústria Farmacêutica, S.A., São Martinho do Bispo, 3045-016 Coimbra, Portugal; Univ Coimbra-University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Nuno A Fonseca
- Bluepharma-Indústria Farmacêutica, S.A., São Martinho do Bispo, 3045-016 Coimbra, Portugal
| | - Ana Sofia Lourenço
- Bluepharma-Indústria Farmacêutica, S.A., São Martinho do Bispo, 3045-016 Coimbra, Portugal
| | - João Nuno Moreira
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal; Univ Coimbra-University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Sérgio Simões
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal; Bluepharma-Indústria Farmacêutica, S.A., São Martinho do Bispo, 3045-016 Coimbra, Portugal; Univ Coimbra-University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
3
|
Dalmau E, Araya-Farias M, Ratti C. Cryogenic Pretreatment Enhances Drying Rates in Whole Berries. Foods 2024; 13:1524. [PMID: 38790824 PMCID: PMC11119938 DOI: 10.3390/foods13101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The impact of cryogenic pretreatments on drying performance was studied in blueberries, seabuckthorn fruits and green grapes. The fruits were immersed in liquid nitrogen in 2 min freezing/thawing cycles (one to five). Untreated samples were used as the control. Drying experiments were carried out on treated and non-treated berries at 50 °C and 1 m/s (hot-air-drying), 50 °C and 25″ Hg vacuum (vacuum-drying), 30 mTorr total pressure and 25 °C shelf temperature (freeze-drying). The weight loss evolution of the foodstuffs was measured as a function of time. Microscopic (SEM and optical) determinations of the epicarp were performed. A visual inspection was performed and color changes and volume reductions were assessed before and after dehydration. The thickness of the berries' epicarp decreased between 20 and 50% (depending on the fruit) after 3-5 immersions in liquid N2. The drying kinetics was accelerated significantly for the three tested drying processes (i.e., drying time decreased from 48 to 16 h for blueberry freeze-drying). The best quality of dried berries was observed for pretreated blueberries after freeze-drying, keeping their volume, shape and color after the process. This work shows that "tailor-made" dried berry products with desired properties can be achieved and drying performance can be improved by the application of ultra-low temperature pretreatments.
Collapse
Affiliation(s)
- Esperanza Dalmau
- Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa, km. 7.5, 07122 Palma de Mallorca, Spain
| | - Monica Araya-Farias
- CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), Paris-Saclay University, SPI, 91190 Gif-sur-Yvette, France
| | - Cristina Ratti
- Département des Sols et de Génie Agroalimentaire (SGA), FSAA, Université Laval, Québec, QC G1V 0A6, Canada;
| |
Collapse
|
4
|
Sikandar SS, Kumar D, Rathod AG, Agrawal S, Tiwari S. Sugar-based Cryoprotectants Stabilize Liposomal Vesicles by Exhibiting a Cholesterol-like Effect. Mol Pharm 2024; 21:813-821. [PMID: 38170188 DOI: 10.1021/acs.molpharmaceut.3c00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Liposomal vesicles tend to fuse and aggregate during lyophilization. To avoid these events, cryoprotectants are added to the dispersion before lyophilization. Herein, we have compared the effect of three commonly used cryoprotectants (mannitol, MTL; trehalose, THL; and β-cyclodextrin, β-CD) upon structural characteristics of liposomes. The formulation was prepared using ethanol injection method, and cryoprotectants were tested at three dose levels (2, 6, and 10 mM). We have elucidated their effect on soy lecithin (SL) liposomes formulated with and without cholesterol (CHL). Characterizations were performed using scattering, thermal, and spectroscopic techniques. CHL molecules interacted hydrophobically with the SL bilayer. In spite of triggering a noticeable increase in the hydrodynamic diameter (about 30 nm), CHL promoted the stabilization of vesicles. Hydrogen bonding interactions were verified by the shift in -OH stretching over 3300-3500 cm-1. This manifested in an increased phase transition temperature (Tm) of SL liposomes. Tm increased further upon incorporation of cryoprotectants, particularly with β-CD. Enthalpic changes were indicative of an affinity interaction between phospholipids and cryoprotectants, regardless of the presence of CHL. β-CD showed concentration-dependent changes in the energetics of this interaction. The affinity of cryoprotectant-liposome interaction has been ranked as β-CD ≫ THL > MNT.
Collapse
Affiliation(s)
- Sayyed S Sikandar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)─Raebareli, Lucknow 226002, Uttar Pradesh, India
| | - Deepak Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)─Raebareli, Lucknow 226002, Uttar Pradesh, India
| | - Amit G Rathod
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)─Raebareli, Lucknow 226002, Uttar Pradesh, India
| | - Shivanshu Agrawal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)─Raebareli, Lucknow 226002, Uttar Pradesh, India
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)─Raebareli, Lucknow 226002, Uttar Pradesh, India
| |
Collapse
|
5
|
Zhou X, Zhuang Y, Liu X, Gu Y, Wang J, Shi Y, Zhang L, Li R, Zhao Y, Chen H, Li J, Yao H, Li L. Study on tumour cell-derived hybrid exosomes as dasatinib nanocarriers for pancreatic cancer therapy. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:532-546. [PMID: 37948136 DOI: 10.1080/21691401.2023.2264358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/23/2023] [Indexed: 11/12/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death. Therefore, we intend to explore novel strategies against PDAC. The exosomes-based biomimetic nanoparticle is an appealing candidate served as a drug carrier in cancer treatment, due to its inherit abilities. In the present study, we designed dasatinib-loaded hybrid exosomes by fusing human pancreatic cancer cells derived exosomes with dasatinib-loaded liposomes, followed by characterization for particle size (119.9 ± 6.10 nm) and zeta potential (-11.45 ± 2.24 mV). Major protein analysis from western blot techniques reveal the presence of exosome marker proteins CD9 and CD81. PEGylated hybrid exosomes showed pH-sensitive drug release in acidic condition, benefiting drug delivery to acidic cancer environment. Dasatinib-loaded hybrid exosomes exhibited significantly higher uptake rates and cytotoxicity to parent PDAC cells by two-sample t-test or by one-way ANOVA analysis of variance, as compared to free drug or liposomal formulations. The results from our computational analysis demonstrated that the drug-likeness, ADMET, and protein-ligand binding affinity of dasatinib are verified successfully. Cancer derived hybrid exosomes may serve as a potential therapeutic candidate for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Xiaofei Zhou
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Department of Clinical Research Center, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuetang Zhuang
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xiaohong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yaowen Gu
- Institute of Medical Information/Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Chemistry, NY University, New York City, NY, USA
| | - Junting Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuchen Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Li Zhang
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Rui Li
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yelin Zhao
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Hebing Chen
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Jiao Li
- Institute of Medical Information/Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongjuan Yao
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Liang Li
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
6
|
Rodrigues M, Matsarskaia O, Rego P, Geraldes V, Connor LE, Oswald IDH, Sztucki M, Shalaev E. Freeze-Induced Phase Transition and Local Pressure in a Phospholipid/Water System: Novel Insights Were Obtained from a Time/Temperature Resolved Synchrotron X-ray Diffraction Study. Mol Pharm 2023; 20:5790-5799. [PMID: 37889088 PMCID: PMC10630958 DOI: 10.1021/acs.molpharmaceut.3c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023]
Abstract
Water-to-ice transformation results in a 10% increase in volume, which can have a significant impact on biopharmaceuticals during freeze-thaw cycles due to the mechanical stresses imparted by the growing ice crystals. Whether these stresses would contribute to the destabilization of biopharmaceuticals depends on both the magnitude of the stress and sensitivity of a particular system to pressure and sheer stresses. To address the gap of the "magnitude" question, a phospholipid, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), is evaluated as a probe to detect and quantify the freeze-induced pressure. DPPC can form several phases under elevated pressure, and therefore, the detection of a high-pressure DPPC phase during freezing would be indicative of a freeze-induced pressure increase. In this study, the phase behavior of DPPC/water suspensions, which also contain the ice nucleation agent silver iodide, is monitored by synchrotron small/wide-angle X-ray scattering during the freeze-thaw transition. Cooling the suspensions leads to heterogeneous ice nucleation at approximately -7 °C, followed by a phase transition of DPPC between -11 and -40 °C. In this temperature range, the initial gel phase of DPPC, Lβ', gradually converts to a second phase, tentatively identified as a high-pressure Gel III phase. The Lβ'-to-Gel III phase transition continues during an isothermal hold at -40 °C; a second (homogeneous) ice nucleation event of water confined in the interlamellar space is detected by differential scanning calorimetry (DSC) at the same temperature. The extent of the phase transition depends on the DPPC concentration, with a lower DPPC concentration (and therefore a higher ice fraction), resulting in a higher degree of Lβ'-to-Gel III conversion. By comparing the data from this study with the literature data on the pressure/temperature Lβ'/Gel III phase boundary and the lamellar lattice constant of the Lβ' phase, the freeze-induced pressure is estimated to be approximately 0.2-2.6 kbar. The study introduces DPPC as a probe to detect a pressure increase during freezing, therefore addressing the gap between a theoretical possibility of protein destabilization by freeze-induced pressure and the current lack of methods to detect freeze-induced pressure. In addition, the observation of a freeze-induced phase transition in a phospholipid can improve the mechanistic understanding of factors that could disrupt the structure of lipid-based biopharmaceuticals, such as liposomes and mRNA vaccines, during freezing and thawing.
Collapse
Affiliation(s)
- Miguel
A. Rodrigues
- Centro
de Química Estrutural, Instituto Superior Tecnico, University of Lisbon, Lisbon 1049-001, Portugal
| | - Olga Matsarskaia
- Institut
Laue−Langevin, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Pedro Rego
- Centro
de Química Estrutural, Instituto Superior Tecnico, University of Lisbon, Lisbon 1049-001, Portugal
| | - Vitor Geraldes
- Centro
de Química Estrutural, Instituto Superior Tecnico, University of Lisbon, Lisbon 1049-001, Portugal
| | - Lauren E. Connor
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K.
- Collaborative
International Research Programme, University
of Strathclyde and Nanyang Technological University, Singapore, Technology
Innovation Centre, Glasgow G1 1RD, U.K.
| | - Iain D. H. Oswald
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K.
| | - Michael Sztucki
- European
Synchrotron Radiation Facility, Grenoble Cedex 9 38043, France
| | - Evgenyi Shalaev
- Abbvie Inc., 2525 Dupont Drive, Irvine, California 92612, United States
| |
Collapse
|
7
|
Kimura Y, Ohkubo T, Shimizu K, Magata Y, Park EY, Hara M. Inhibition of cryoaggregation of phospholipid liposomes by an Arabidopsis intrinsically disordered dehydrin and its K-segment. Colloids Surf B Biointerfaces 2021; 211:112286. [PMID: 34929484 DOI: 10.1016/j.colsurfb.2021.112286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/24/2021] [Accepted: 12/11/2021] [Indexed: 01/01/2023]
Abstract
Dehydrin is an intrinsically disordered protein involved in the cold tolerance of plants. Although dehydrins have been thought to protect biomembranes under cold conditions, the underlying protective mechanism has not been confirmed. Here we report that Arabidopsis dehydrin AtHIRD11 inhibited the aggregation of phospholipid liposomes after freezing and thawing. AtHIRD11 showed significantly greater cryoaggregation-prevention activity than cryoprotective agents such as trehalose, proline, and polyethylene glycols. Amino acid sequence segmentation analysis indicated that the K-segment of AtHIRD11 inhibited the cryoaggregation of phosphatidylcholine (PC) liposomes but other segments did not. This showed that K-segments conserved in all dehydrins were likely to be the cryoprotective sites of dehydrins. Amino acid replacement for a typical K-segment (TypK for short) sequence demonstrated that both hydrophobic and charged amino acids were required for the cryoaggregation-prevention activity of PC liposomes. The amino acid shuffling of TypK remarkably reduced cryoprotective activity. Although TypK did not bind to PC liposomes in solution, the addition of liposomes reduced its disordered content under crowded conditions. Together, these results suggested that dehydrins protected biomembranes via conserved K-segments whose sequences were optimized for cryoprotective activities.
Collapse
Affiliation(s)
- Yuki Kimura
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Tomohiro Ohkubo
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Kosuke Shimizu
- Department of Molecular Imaging, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yasuhiro Magata
- Department of Molecular Imaging, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Enoch Y Park
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Masakazu Hara
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| |
Collapse
|
8
|
Enhancing the preservation of liposomes: The role of cryoprotectants, lipid formulations and freezing approaches. Cryobiology 2021; 98:46-56. [PMID: 33400962 DOI: 10.1016/j.cryobiol.2020.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/30/2020] [Accepted: 12/29/2020] [Indexed: 01/17/2023]
Abstract
In the last decades, liposomes acquired a striking success in the biomedical field thanks to their biocompatibility and drug delivery ability. Many liposomal drug formulations have been already approved by the Food and Drug Administration (FDA) and used for the treatment of a wide range of pathologies with or without further engineering. Their clinical application requires strict compliance with high standard quality rules, and it is crucial to employ storage methods that do not affect the integrity of the vesicles and preventing the leakage of their cargo. In this work, the design of a suitable formulation for freeze-drying had been investigated for two different liposomes, DOPC-DOTAP and the PEGylated counterpart, DOPC-DOTAP-DSPE-PEG. The role of various cryoprotectants was evaluated paying attention to their ability to preserve the structural integrity of liposomes. At first, the study was focused on freezing and two methodologies were investigated, quenching in liquid nitrogen and shelf-ramped freezing. This analysis showed that the disaccharides (cellobiose, glucose, lactose, sucrose, and trehalose) and the polyol (mannitol) protected successfully the integrity of liposomes, while during the process, in the presence of a surfactant, liposomes were strongly damaged and fragmented by the ice crystals. Furthermore, the choice of the rate of freezing depended on the different compositions of the lipid bilayer. Finally, the effects of lyophilization on liposomes with and without additives were studied; cellobiose, lactose and trehalose showed encouraging results for the maintenance of the morpho-functional parameters of liposomes during the entire freeze-drying process.
Collapse
|
9
|
Wang Y, Grainger DW. Lyophilized liposome-based parenteral drug development: Reviewing complex product design strategies and current regulatory environments. Adv Drug Deliv Rev 2019; 151-152:56-71. [PMID: 30898571 DOI: 10.1016/j.addr.2019.03.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 01/16/2023]
Abstract
Given the successful entry of several liposomal drug products into market, and some with decades of clinical efficacy, liposomal drug delivery systems have proven capabilities to overcome certain limitations of traditional drug delivery, especially for toxic and biologic drugs. This experience has helped promote new liposomal approaches to emerging drug classes and current therapeutic challenges. All approved liposomal dosage forms are parenteral formulations, a pathway demonstrating greatest safety and efficacy to date. Due to the intrinsic instability of aqueous liposomal dispersions, lyophilization is commonly applied as an important solution to improve liposomal drug stability, and facilitate transportation, storage and improve product shelf-life. While lyophilization is a mature pharmaceutical technology, liposome-specific lyophilization platforms must be developed using particular lyophilization experience and strategies. This review provides an overview of liposome formulation-specific lyophilization approaches for parenteral use, excipients used exclusively in liposomal parenteral products, lyophilized liposome formulation design and process development, long-term storage, and current regulatory guidance for liposome drug products. Readers should capture a comprehensive understanding of formulation and process variables and strategies for developing parenterally administered liposomal drugs.
Collapse
|
10
|
Xiao Y, Liu Q, Clulow AJ, Li T, Manohar M, Gilbert EP, de Campo L, Hawley A, Boyd BJ. PEGylation and surface functionalization of liposomes containing drug nanocrystals for cell-targeted delivery. Colloids Surf B Biointerfaces 2019; 182:110362. [PMID: 31351271 DOI: 10.1016/j.colsurfb.2019.110362] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/04/2019] [Accepted: 07/13/2019] [Indexed: 01/09/2023]
Abstract
Liposomal formulations have important therapeutic applications in anti-cancer treatments but current formulations suffer from serious side effects, high dosage requirements and prolonged treatment. In this study, PEGylated azide-functionalized liposomes containing drug nanocrystals were investigated with the aim of increasing the drug payload and achieving functionalization for targeted delivery. Liposomes were characterized using cryogenic transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS), small and ultra-small angle neutron scattering (SANS/USANS) and small and wide angle X-ray scattering (SAXS/WAXS). Cryo-TEM experiments revealed the dimensions of the nanocrystal-loaded liposomes and the change of shape from spherical to elongated after the formation of nanocrystals. Results from SANS/USANS experiments confirmed the asymmetric particle shape. SAXS/WAXS experiments confirmed that the crystalline drug only occurred in freeze-thawed samples and correlated with a new unidentified polymorphic form of ciprofloxacin. Using a small molecule dye, dibenzocyclooctyne (DBCO)-cy5, specific conjugation between DBCO groups and surface azide groups on the liposomes was confirmed; this indicates the promise of this system for tumour-targeted delivery.
Collapse
Affiliation(s)
- Yunxin Xiao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC, 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University Parkville Campus, Australia
| | - Qingtao Liu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC, 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University Parkville Campus, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Tang Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC, 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University Parkville Campus, Australia
| | - Madhura Manohar
- National Deuteration Facility (NDF), Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Elliot P Gilbert
- Australian Centre for Neutron Scattering (ACNS), Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Liliana de Campo
- Australian Centre for Neutron Scattering (ACNS), Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Adrian Hawley
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation (ANSTO), 800 Blackburn Rd, Clayton, VIC, 3168, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC, 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University Parkville Campus, Australia.
| |
Collapse
|
11
|
Qiao H, Hu N, Bai J, Ren L, Liu Q, Fang L, Wang Z. Encapsulation of Nucleic Acids into Giant Unilamellar Vesicles by Freeze-Thaw: a Way Protocells May Form. ORIGINS LIFE EVOL B 2017; 47:499-510. [PMID: 27807660 DOI: 10.1007/s11084-016-9527-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/19/2016] [Indexed: 12/27/2022]
Abstract
Protocells are believed to consist of a lipid membrane and encapsulated nucleic acid. As the lipid membrane is impermeable to macromolecules like nucleic acids, the processes by which nucleic acids become encapsulated inside lipid membrane compartments are still unknown. In this paper, a freeze-thaw method was modified and applied to giant unilamellar vesicles (GUVs) and deoxyribonucleic acid (DNA) in mixed solution resulting in the efficient encapsulation of 6.4 kb plasmid DNA and similar length linear DNA into GUVs. The mechanism of encapsulation was followed by observing the effect of freeze-thaw temperatures on GUV morphological change, DNA encapsulation and ice crystal formation, and analyzing their correlation. Following ice crystal formation, the shape of spherical GUVs was altered and membrane integrity was damaged and this was found to be a necessary condition for encapsulation. Heating alone had no effects on DNA encapsulation, but was helpful for restoring the spherical shape and membrane integrity of GUVs damaged during freezing. These results suggested that freeze-thaw could promote the encapsulation of DNA into GUVs by a mechanism: the vesicle membrane was breached by ice crystal formation during freezing, DNA entered into damaged GUVs through these membrane gaps and was encapsulated after the membrane was resealed during the thawing process. The process described herein therefore describes a simple way for the encapsulation of nucleic acids and potentially other macromolecules into lipid vesicles, a process by which early protocells might have formed.
Collapse
Affiliation(s)
- Hai Qiao
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founed by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, P. O. Box 153, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Na Hu
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founed by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, P. O. Box 153, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Jin Bai
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founed by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, P. O. Box 153, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Lili Ren
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founed by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, P. O. Box 153, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Qing Liu
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founed by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, P. O. Box 153, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Liaoqiong Fang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founed by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, P. O. Box 153, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China.
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founed by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, P. O. Box 153, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
12
|
Rasoulianboroujeni M, Kupgan G, Moghadam F, Tahriri M, Boughdachi A, Khoshkenar P, Ambrose J, Kiaie N, Vashaee D, Ramsey J, Tayebi L. Development of a DNA-liposome complex for gene delivery applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:191-197. [DOI: 10.1016/j.msec.2017.02.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/17/2016] [Accepted: 02/06/2017] [Indexed: 01/22/2023]
|
13
|
Bardania H, Shojaosadati SA, Kobarfard F, Dorkoosh F. Optimization of RGD-modified Nano-liposomes Encapsulating Eptifibatide. IRANIAN JOURNAL OF BIOTECHNOLOGY 2016; 14:33-40. [PMID: 28959324 DOI: 10.15171/ijb.1399] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Eptifibatide (Integrilin) is an intravenous (IV) peptide drug that selectively inhibits ligand binding to the platelet GP IIb/IIIa receptor. It is an efficient peptide drug, however has a short half-life. Therefore, antithrombotic agents like eptifibatide are required to become improved with a protected and targeted delivery system such as using nano-liposomes to the site of thrombus. OBJECTIVES The goal in the present report was to optimize encapsulation efficiency of the eptifibatide into Arg-Gly-Asp (RGD)-modified nano-liposomes (RMNL). As well, it was intended to evaluate the effect of sodium lauryl sulfate (SLS) on drug release. MATERIALS AND METHODS The effect of five independent variables including number of freeze/thawing cycles, concentration of eptifibatide, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol, and dipalmitoyl-GRGDSPA peptide on drug entrapment efficiency (DEE) was investigated using response surface methodology (RSM). The effect of different concentrations of SLS on encapsulation and drug release from RMNL was also investigated. The size and morphology of RMNL were characterized using transmission electron microscopy (TEM). RESULTS The maximum DEE (38%) was obtained with 7 freeze/thawing cycles, 3.65 mmoL eptifibatide, 7 mM DSPC, 3 mM cholesterol, and 1 mM dipalmitoyl- GRGDSPA peptide. SLS has significantly increased the drug release from RMNL, although its effect on encapsulation efficiency was not significant. CONCLUSIONS The optimization of the formulations for valuable and expensive peptide drugs is essential to have the maximum encapsulation efficiency and the minimum experiments.
Collapse
Affiliation(s)
- Hassan Bardania
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Abbas Shojaosadati
- Department of Biotechnology Group Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Farzad Kobarfard
- Department of Medical Chemistry, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farid Dorkoosh
- Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Sato YT, Umezaki K, Sawada S, Mukai SA, Sasaki Y, Harada N, Shiku H, Akiyoshi K. Engineering hybrid exosomes by membrane fusion with liposomes. Sci Rep 2016; 6:21933. [PMID: 26911358 PMCID: PMC4766490 DOI: 10.1038/srep21933] [Citation(s) in RCA: 444] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 02/03/2016] [Indexed: 12/18/2022] Open
Abstract
Exosomes are a valuable biomaterial for the development of novel nanocarriers as functionally advanced drug delivery systems. To control and modify the performance of exosomal nanocarriers, we developed hybrid exosomes by fusing their membranes with liposomes using the freeze–thaw method. Exosomes embedded with a specific membrane protein isolated from genetically modified cells were fused with various liposomes, confirming that membrane engineering methods can be combined with genetic modification techniques. Cellular uptake studies performed using the hybrid exosomes revealed that the interactions between the developed exosomes and cells could be modified by changing the lipid composition or the properties of the exogenous lipids. These results suggest that the membrane-engineering approach reported here offers a new strategy for developing rationally designed exosomes as hybrid nanocarriers for use in advanced drug delivery systems.
Collapse
Affiliation(s)
- Yuko T Sato
- JST-ERATO, Akiyoshi Bio-nanotransporter Project, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kaori Umezaki
- JST-ERATO, Akiyoshi Bio-nanotransporter Project, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shinichi Sawada
- JST-ERATO, Akiyoshi Bio-nanotransporter Project, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.,Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Sada-atsu Mukai
- JST-ERATO, Akiyoshi Bio-nanotransporter Project, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.,Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Naozumi Harada
- Department of Immuno-Gene Therapy, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Hiroshi Shiku
- Department of Immuno-Gene Therapy, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Kazunari Akiyoshi
- JST-ERATO, Akiyoshi Bio-nanotransporter Project, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.,Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
15
|
Cipolla D, Wu H, Salentinig S, Boyd B, Rades T, Vanhecke D, Petri-Fink A, Rothin-Rutishauser B, Eastman S, Redelmeier T, Gonda I, Chan HK. Formation of drug nanocrystals under nanoconfinement afforded by liposomes. RSC Adv 2016. [DOI: 10.1039/c5ra25898g] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In response to freeze–thaw, liposome-encapsulated antibiotic (A) is converted into nanocrystalline form (B) resulting in an attenuated drug release profile.
Collapse
Affiliation(s)
- D. Cipolla
- Faculty of Pharmacy
- The University of Sydney
- Australia
- Aradigm Corporation
- Hayward
| | - H. Wu
- Aradigm Corporation
- Hayward
- USA
| | - S. Salentinig
- Laboratory for Biointerfaces, Department Materials meet Life, Empa
- Swiss Federal Laboratories for Materials Science and Technology
- St. Gallen
- Switzerland
| | - B. Boyd
- Monash Institute of Pharmaceutical Sciences
- Monash
- Australia
| | - T. Rades
- Department of Pharmaceutical Sciences
- University of Copenhagen
- Denmark
| | - D. Vanhecke
- Adolphe Merkle Institute
- Université de Fribourg
- Fribourg
- Switzerland
| | - A. Petri-Fink
- Adolphe Merkle Institute
- Université de Fribourg
- Fribourg
- Switzerland
| | | | | | | | | | - H. K. Chan
- Faculty of Pharmacy
- The University of Sydney
- Australia
| |
Collapse
|
16
|
Strimbeck GR, Schaberg PG, Fossdal CG, Schröder WP, Kjellsen TD. Extreme low temperature tolerance in woody plants. FRONTIERS IN PLANT SCIENCE 2015; 6:884. [PMID: 26539202 PMCID: PMC4609829 DOI: 10.3389/fpls.2015.00884] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 10/05/2015] [Indexed: 05/07/2023]
Abstract
Woody plants in boreal to arctic environments and high mountains survive prolonged exposure to temperatures below -40°C and minimum temperatures below -60°C, and laboratory tests show that many of these species can also survive immersion in liquid nitrogen at -196°C. Studies of biochemical changes that occur during acclimation, including recent proteomic and metabolomic studies, have identified changes in carbohydrate and compatible solute concentrations, membrane lipid composition, and proteins, notably dehydrins, that may have important roles in survival at extreme low temperature (ELT). Consideration of the biophysical mechanisms of membrane stress and strain lead to the following hypotheses for cellular and molecular mechanisms of survival at ELT: (1) Changes in lipid composition stabilize membranes at temperatures above the lipid phase transition temperature (-20 to -30°C), preventing phase changes that result in irreversible injury. (2) High concentrations of oligosaccharides promote vitrification or high viscosity in the cytoplasm in freeze-dehydrated cells, which would prevent deleterious interactions between membranes. (3) Dehydrins bind membranes and further promote vitrification or act stearically to prevent membrane-membrane interactions.
Collapse
Affiliation(s)
- G. Richard Strimbeck
- Department of Biology, Norwegian University of Science and TechnologyTrondheim, Norway
- *Correspondence: G. Richard Strimbeck,
| | - Paul G. Schaberg
- Northern Research Station, United States Department of Agriculture Forest Service, BurlingtonVT, USA
| | | | | | - Trygve D. Kjellsen
- Department of Biology, Norwegian University of Science and TechnologyTrondheim, Norway
| |
Collapse
|
17
|
Ultrathin core–sheath fibers for liposome stabilization. Colloids Surf B Biointerfaces 2014; 122:630-637. [DOI: 10.1016/j.colsurfb.2014.07.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 07/21/2014] [Accepted: 07/28/2014] [Indexed: 11/20/2022]
|
18
|
Costa AP, Xu X, Burgess DJ. Freeze-Anneal-Thaw Cycling of Unilamellar Liposomes: Effect on Encapsulation Efficiency. Pharm Res 2013; 31:97-103. [DOI: 10.1007/s11095-013-1135-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/24/2013] [Indexed: 11/29/2022]
|
19
|
van den Hoven JM, Metselaar JM, Storm G, Beijnen JH, Nuijen B. Cyclodextrin as membrane protectant in spray-drying and freeze-drying of PEGylated liposomes. Int J Pharm 2012; 438:209-16. [PMID: 22960501 DOI: 10.1016/j.ijpharm.2012.08.046] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/21/2012] [Accepted: 08/24/2012] [Indexed: 01/26/2023]
Abstract
In this study it was investigated whether hydroxypropyl-β-cyclodextrin (HPβCD) is able to stabilize the liposomal membranes during drying of long circulating polyethylene glycol (PEG) coated liposomes, as compared to the disaccharides trehalose and sucrose. PEGylated liposomes loaded with prednisolone disodium phosphate (PLP) were dried by spray-drying or freeze-drying. The dried powders were tested on their residual moisture content, glass transition temperature and amorphous character. Upon reconstitution the liposomal size, size distribution and drug retention were determined and the results were compared to the characteristics of the formulation solution before drying. In contrast to the disaccharides, HPβCD stabilizes the liposomal membranes of the PEGylated liposomes during the drying process of both spray drying and freeze-drying when present in a lipid:carbohydrate ratio of 1:6 (w/w). The resulting powder can be stored at room temperature. No changes in size and size distribution were seen upon reconstitution of the HPβCD containing formulations. Drying resulted in a minimal leaking of PLP from the liposomes. Its relatively high [Formula: see text] and T(g) of HPβCD, as compared to the disaccharides, make HPβCD an excellent membrane protectant for dry PEGylated liposomal formulations.
Collapse
|
20
|
|
21
|
Wieber A, Selzer T, Kreuter J. Physico-chemical characterisation of cationic DOTAP liposomes as drug delivery system for a hydrophilic decapeptide before and after freeze-drying. Eur J Pharm Biopharm 2011; 80:358-67. [PMID: 22119734 DOI: 10.1016/j.ejpb.2011.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 10/15/2022]
Abstract
In the present study, positively charged 1,2-dioleoyloxy-3-trimethylammoniumpropane (DOTAP) liposomes as a delivery system for a hydrophilic decapeptide were developed. The main objective was the preparation of a stable, highly loaded, lyophilised formulation to yield the basis for an acceptable shelf life. The influences of addition of cholesterol, pH value, amounts of lipid and peptide, type and amount of sugar-based cryoprotective agent (trehalose and sucrose), and time point for cryoprotector addition as well as the freeze-drying process parameters were investigated. The collapse temperatures of the liposome dispersions in the presence of the disaccharides trehalose and sucrose were determined using a freeze-drying microscope (Lyostat 2). The liposome morphology before freeze-drying was determined by transmission electron microscopy (TEM). The evidence of intact liposomes after freeze-drying was shown by scanning electron microscope (SEM) imaging. In summary, this study demonstrated the successful development of DOTAP liposomes including their lyophilisation as a drug delivery system for small hydrophilic peptides.
Collapse
Affiliation(s)
- Alena Wieber
- Merck Serono, Formulation and Process Development, Darmstadt, Germany.
| | | | | |
Collapse
|
22
|
Izutsu KI, Yomota C, Kawanishi T. Stabilization of Liposomes in Frozen Solutions Through Control of Osmotic Flow and Internal Solution Freezing by Trehalose. J Pharm Sci 2011; 100:2935-44. [DOI: 10.1002/jps.22518] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 12/07/2010] [Accepted: 01/25/2011] [Indexed: 11/05/2022]
|
23
|
Lukáč R, Kauerová Z, Mašek J, Bartheldyová E, Kulich P, Koudelka Š, Korvasová Z, Plocková J, Papoušek F, Kolář F, Schmidt R, Turánek J. Preparation of metallochelating microbubbles and study on their site-specific interaction with rGFP-HisTag as a model protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:4829-4837. [PMID: 21417344 DOI: 10.1021/la104677b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The histidine-metallochelating lipid complex is one of the smallest high affinity binding units used as tools for rapid noncovalent binding of histidine tagged molecules, especially recombinant proteins. The advantage of metallochelating complex over protein-ligand complexes (e.g., streptavidine-biotin, glutathiontransferase-glutathion) consists in its very low immunogenicity, if any. This concept for the construction of surface-modified metallochelating microbubbles was proved with recombinant green fluorescent protein (rGFP) containing 6His-tag. This protein is easy to be detected by various fluorescence techniques as flow cytometry and confocal microscopy. Microbubbles (MB) composed of DPPC with various contents of metallochelating lipid DOGS-NTA-Ni were prepared by intensive shaking of the liposome suspension under the atmosphere of sulfur hexafluoride. For this purpose, the instrument 3M ESPE CapMix was used. Various techniques (static light scattering, flow cytometry, and optical microscopy) were compared and used for the measurements of the size distribution of MB. All three methods demonstrated that the prepared MB were homogeneous in their size, and the mean diameter of the MB in various batches was within the range of 2.1-2.8 μm (the size range of 1-10 μm). The presence of large MB (8-10 μm) was marginal. Counting of MB revealed that the average amount of MB prepared of 10 mg of phospholipid equaled approximately 10(9) MB/mL. Lyophilized MB were prepared with saccharose as a cryoprotectant. These MB were shown to be stable both in vitro (the estimated half-live of the MB in bovine serum at 37 °C was 3-7 min) and in vivo (mouse). The stability of the MB was affected by molar content of DOGS-NTA-Ni. DPPC-based metallochelating MB provided a clear and very contrast image of the ventricular cavity soon after the injection. Site selective and stable binding of rGFP-HisTag (as a model of His-tagged protein) onto the surface of metallochelating MB was demonstrated by confocal microscopy.
Collapse
Affiliation(s)
- Róbert Lukáč
- Department of Pharmacology, Toxicology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Holovati JL, Acker JP. Emerging Role for Use of Liposomes in the Biopreservation of Red Blood Cells. ACTA ACUST UNITED AC 2011; 38:99-106. [PMID: 21566711 DOI: 10.1159/000326841] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 01/25/2011] [Indexed: 12/21/2022]
Abstract
SUMMARY: Biopreservation is the process of maintaining the integrity and functionality of cells held outside the native environment for extended storage times. The development of red blood cell (RBC) biopreservation techniques that maintain in vitro RBC viability and function represents the foundation of modern blood banking. The biopreservation of RBCs for clinical use can be categorized based on the techniques used to achieve biologic stability, including hypothermic storage and cryopreservation. This review will examine the emerging role of liposomes in the RBC biopreservation, including the incorporation of liposomes into RBC membranes as an effective approach for minimizing RBC hypothermic storage membrane lesion and use of liposomes as a permeabilization strategy for the intracellular accumulation of novel intracellular cryoprotectants. Integration of current biopreservation research with blood banking practices offers enormous potential for future improvements of safety and efficacy of RBC transfusion.
Collapse
Affiliation(s)
- Jelena L Holovati
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
25
|
Ducat E, Brion M, Lecomte F, Evrard B, Piel G. The experimental design as practical approach to develop and optimize a formulation of peptide-loaded liposomes. AAPS PharmSciTech 2010; 11:966-75. [PMID: 20512433 DOI: 10.1208/s12249-010-9463-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 05/13/2010] [Indexed: 01/25/2023] Open
Abstract
To investigate the encapsulation of Print 3G, a peptidic agent that could reduce the angiogenic development of breast tumors, pegylated liposomes used as intravenous vectors were studied and characterized. Recently, the path of liposomes has been explored with success to improve the pharmacological properties of peptidic drugs and to stabilize them. In this study, loaded unilamellar vesicles composed of SPC:CHOL:mPEG2000-DSPE (47:47:6) were prepared by the hydration of lipid film technique. An HPLC method was developed and validated for the determination of Print 3G to calculate its encapsulation efficiency. Observed Print 3G adsorption on different materials employed during liposome preparation (such as glass beads, tubing, and connections for extrusion) led to the modification of the manufacturing method. The freeze-thawing technique was used to enhance the amount of Print 3G encapsulated into blank liposomes prepared using the hydration of lipid film procedure. Many factors may influence peptide entrapment, namely the number of freeze-thawing cycles, the lipid concentration, the peptide concentration, and the mixing time. Consequently, a design of experiments was performed to obtain the best encapsulation efficiency while minimizing the number of experiments. The lipid concentration and the number of freeze-thawing cycles were identified as the positive factors influencing the encapsulation. As a result of the optimization, an optimum was found and encapsulation efficiencies were improved from around 30% to 63%. Liposome integrity was evaluated by photon correlation spectroscopy and freeze-fracture electron microscopy to ensure that the selected formulation possesses the required properties to be a potential candidate for further in vitro and in vivo experiments.
Collapse
|
26
|
Chen C, Han D, Cai C, Tang X. An overview of liposome lyophilization and its future potential. J Control Release 2010; 142:299-311. [DOI: 10.1016/j.jconrel.2009.10.024] [Citation(s) in RCA: 270] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 10/20/2009] [Indexed: 01/19/2023]
|
27
|
Vincourt V, Nguyen L, Chaumeil JC, Dumortier G. Freeze-drying of ATP entrapped in cationic, low lipid liposomes. Cryobiology 2010; 60:262-70. [PMID: 20097191 DOI: 10.1016/j.cryobiol.2010.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 12/10/2009] [Accepted: 01/08/2010] [Indexed: 10/19/2022]
Abstract
Concerning the instability of ATP liposomes formulated to easily diffuse through the liver (size approximately 100 nm), this work targets the key parameters that influence the freeze-drying of a preparation that combines cholesterol, DOTAP and phosphatidylcholine (either natural soybean or egg (SPC or EPC) or hydrogenated (HSPC)). After freeze-drying blank liposomes, size increased significantly when initial lipid concentration was lowered from 20 to 5mM (p=0.0018). With low lipid concentration preparation (5mM), SPC limited size increase (SI) more efficiently compared to EPC or HSPC. With SPC and EPC, sucrose showed better size results compared to trehalose (Lyoprotectant/Lipid ratio (w/w) avoiding any SI: approximately 5 and approximately 10 (for SPC), approximately 10 and approximately 15 (for EPC), for sucrose and trehalose, respectively), but the opposite was evidenced with HSPC liposomes where a Trehalose/Lipid ratio of 25 barely prevented SI. In addition, slow versus quick cooling rate led to limiting SI for HSPC liposomes (p=0.0035). With sucrose or trehalose at both Lyoprotectant/Lipid ratios ensuring size stabilisation (10:1 and 15:1, respectively), ATP leakage ranged between 38.8+/-7.9% and 58.2+/-1.4%. In conclusion, this study emphasizes that using strict size maintenance as the primary objective does not result in drug complete retention inside the liposome core.
Collapse
Affiliation(s)
- Véronique Vincourt
- Laboratoire de Pharmacie Galénique, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, 4, Avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | | | | | | |
Collapse
|
28
|
Bibliography. Current world literature. Curr Opin Obstet Gynecol 2009; 21:296-300. [PMID: 19458522 DOI: 10.1097/gco.0b013e32832c972c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This bibliography is compiled by clinicians from the journals listed at the end of this publication. It is based on literature entered into our database between 1 February 2008 and 31 January 2009 (articles are generally added to the database about two and a half months after publication). In addition, the bibliography contains every paper annotated by reviewers; these references were obtained from a variety of bibliographic databases and published between the beginning of the review period and the time of going to press. The bibliography has been grouped into topics that relate to the reviews in this issue.
Collapse
|
29
|
Siow LF, Rades T, Lim MH. Cryo-responses of two types of large unilamellar vesicles in the presence of non-permeable or permeable cryoprotecting agents. Cryobiology 2008; 57:276-85. [DOI: 10.1016/j.cryobiol.2008.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 09/14/2008] [Accepted: 09/17/2008] [Indexed: 10/21/2022]
|
30
|
Structural changes in dipalmitoylphosphatidylcholine bilayer promoted by Ca2+ ions: a small-angle neutron scattering study. Chem Phys Lipids 2008; 155:80-9. [DOI: 10.1016/j.chemphyslip.2008.07.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 07/16/2008] [Accepted: 07/18/2008] [Indexed: 11/16/2022]
|