1
|
Moreira P, Tuncali K, Tempany C, Tokuda J. AI-Based Isotherm Prediction for Focal Cryoablation of Prostate Cancer. Acad Radiol 2023; 30 Suppl 1:S14-S20. [PMID: 37236896 PMCID: PMC10524864 DOI: 10.1016/j.acra.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 05/28/2023]
Abstract
RATIONALE AND OBJECTIVES Focal therapies have emerged as minimally invasive alternatives for patients with localized low-risk prostate cancer (PCa) and those with postradiation recurrence. Among the available focal treatment methods for PCa, cryoablation offers several technical advantages, including the visibility of the boundaries of frozen tissue on the intraprocedural images, access to anterior lesions, and the proven ability to treat postradiation recurrence. However, predicting the final volume of the frozen tissue is challenging as it depends on several patient-specific factors, such as proximity to heat sources and thermal properties of the prostatic tissue. MATERIALS AND METHODS This paper presents a convolutional neural network model based on 3D-Unet to predict the frozen isotherm boundaries (iceball) resultant from a given a cryo-needle placement. Intraprocedural magnetic resonance images acquired during 38 cases of focal cryoablation of PCa were retrospectively used to train and validate the model. The model accuracy was assessed and compared against a vendor-provided geometrical model, which is used as a guideline in routine procedures. RESULTS The mean Dice Similarity Coefficient using the proposed model was 0.79±0.08 (mean+SD) vs 0.72±0.06 using the geometrical model (P<.001). CONCLUSION The model provided an accurate iceball boundary prediction in less than 0.4second and has proven its feasibility to be implemented in an intraprocedural planning algorithm.
Collapse
Affiliation(s)
- Pedro Moreira
- Brigham and Women's Hospital, 75 Francis St, Boston, MA 22115 (P.M., K.T., C.T., J.T.); Harvard Medical School, 25 Shattuck St, Boston, MA 02115 (P.M., K.T., C.T., J.T.).
| | - Kemal Tuncali
- Brigham and Women's Hospital, 75 Francis St, Boston, MA 22115 (P.M., K.T., C.T., J.T.); Harvard Medical School, 25 Shattuck St, Boston, MA 02115 (P.M., K.T., C.T., J.T.)
| | - Clare Tempany
- Brigham and Women's Hospital, 75 Francis St, Boston, MA 22115 (P.M., K.T., C.T., J.T.); Harvard Medical School, 25 Shattuck St, Boston, MA 02115 (P.M., K.T., C.T., J.T.)
| | - Junichi Tokuda
- Brigham and Women's Hospital, 75 Francis St, Boston, MA 22115 (P.M., K.T., C.T., J.T.); Harvard Medical School, 25 Shattuck St, Boston, MA 02115 (P.M., K.T., C.T., J.T.)
| |
Collapse
|
2
|
Pushkarev AV, Ryabikin SS, Saakyan NY, Tsiganov DI, Burkov IA, Vasilev AO. A study of prostate multiprobe cryoablation near urethra for precision treatment planning. Cryobiology 2022; 109:10-19. [PMID: 36283423 DOI: 10.1016/j.cryobiol.2022.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 02/06/2023]
Abstract
The simplified preoperative planning of multiprobe prostate cryoablation limits its efficiency. In order to improve it, the thermal history prediction software is being developed. However, the problem of high risks at the prostate-urethra boundary has not been solved yet. The urethral warming system is used to protect the urethral canal from freezing. On the one hand it is used to reduce the risk of damage to the urethra; on the other hand it increases the risk of insufficient ablation of the tumor. This paper presents a step towards the possibility of carrying out the precision prostate cryoablation in this region. For the experimental part, three cases of arrangement of one and two argon cryoprobes and a heating catheter have been considered. Freezing zone shape and dimensions, and temperature at control points depending on time have been obtained. Experimental results have clearly shown the effect of the heating catheter, the second cryoprobe, and the initial temperature of the biotissue phantom on the freezing zone. After, the thermal aspects of treatment simulation have been developed and verified. A series of calculations have been carried out with the goal to get the information about optimizing the prostate cryoablation on the prostate-urethra boundary. The arrangement of cryoprobes has been proposed for three different variants for prostate cryoablation (sectors of 90, 180° and 360°). The area of prostate tissues near the urethra that cannot be cooled below the necrosis temperature is shown. This information is expected to be useful for improving the quality of cryosurgery planning algorithms (e.g. for tumor treatment).
Collapse
Affiliation(s)
- A V Pushkarev
- Bauman Moscow State Technical University, Moscow, Russia; Russian Medical Academy of Continuous Professional Education, Moscow, Russia.
| | - S S Ryabikin
- Bauman Moscow State Technical University, Moscow, Russia
| | - N Yu Saakyan
- Bauman Moscow State Technical University, Moscow, Russia
| | - D I Tsiganov
- Bauman Moscow State Technical University, Moscow, Russia; Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - I A Burkov
- Bauman Moscow State Technical University, Moscow, Russia
| | - A O Vasilev
- Bauman Moscow State Technical University, Moscow, Russia; Department of Urology, Moscow State University of Medicine and Dentistry n.a. A.I. Evdokimov, Moscow, Russia
| |
Collapse
|
3
|
Baust JM, Rabin Y, Polascik TJ, Santucci KL, Snyder KK, Van Buskirk RG, Baust JG. Defeating Cancers' Adaptive Defensive Strategies Using Thermal Therapies: Examining Cancer's Therapeutic Resistance, Ablative, and Computational Modeling Strategies as a means for Improving Therapeutic Outcome. Technol Cancer Res Treat 2018; 17:1533033818762207. [PMID: 29566612 PMCID: PMC5871056 DOI: 10.1177/1533033818762207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Diverse thermal ablative therapies are currently in use for the treatment of cancer. Commonly applied with the intent to cure, these ablative therapies are providing promising success rates similar to and often exceeding "gold standard" approaches. Cancer-curing prospects may be enhanced by deeper understanding of thermal effects on cancer cells and the hosting tissue, including the molecular mechanisms of cancer cell mutations, which enable resistance to therapy. Furthermore, thermal ablative therapies may benefit from recent developments in computer hardware and computation tools for planning, monitoring, visualization, and education. METHODS Recent discoveries in cancer cell resistance to destruction by apoptosis, autophagy, and necrosis are now providing an understanding of the strategies used by cancer cells to avoid destruction by immunologic surveillance. Further, these discoveries are now providing insight into the success of the diverse types of ablative therapies utilized in the clinical arena today and into how they directly and indirectly overcome many of the cancers' defensive strategies. Additionally, the manner in which minimally invasive thermal therapy is enabled by imaging, which facilitates anatomical features reconstruction, insertion guidance of thermal probes, and strategic placement of thermal sensors, plays a critical role in the delivery of effective ablative treatment. RESULTS The thermal techniques discussed include radiofrequency, microwave, high-intensity focused ultrasound, laser, and cryosurgery. Also discussed is the development of thermal adjunctive therapies-the combination of drug and thermal treatments-which provide new and more effective combinatorial physical and molecular-based approaches for treating various cancers. Finally, advanced computational and planning tools are also discussed. CONCLUSION This review lays out the various molecular adaptive mechanisms-the hallmarks of cancer-responsible for therapeutic resistance, on one hand, and how various ablative therapies, including both heating- and freezing-based strategies, overcome many of cancer's defenses, on the other hand, thereby enhancing the potential for curative approaches for various cancers.
Collapse
Affiliation(s)
- John M Baust
- 1 CPSI Biotech, Owego, NY, USA.,2 Institute of Biomedical Technology, State University of New York at Binghamton, Binghamton, NY, USA
| | - Yoed Rabin
- 3 Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Thomas J Polascik
- 4 Division of Urology, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Kimberly L Santucci
- 1 CPSI Biotech, Owego, NY, USA.,2 Institute of Biomedical Technology, State University of New York at Binghamton, Binghamton, NY, USA
| | - Kristi K Snyder
- 1 CPSI Biotech, Owego, NY, USA.,2 Institute of Biomedical Technology, State University of New York at Binghamton, Binghamton, NY, USA
| | - Robert G Van Buskirk
- 1 CPSI Biotech, Owego, NY, USA.,2 Institute of Biomedical Technology, State University of New York at Binghamton, Binghamton, NY, USA.,5 Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - John G Baust
- 2 Institute of Biomedical Technology, State University of New York at Binghamton, Binghamton, NY, USA.,5 Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
4
|
He ZZ, Liu J. An efficient thermal evolution model for cryoablation with arbitrary multi-cryoprobe configuration. Cryobiology 2015; 71:318-28. [PMID: 26256654 DOI: 10.1016/j.cryobiol.2015.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/04/2015] [Accepted: 08/04/2015] [Indexed: 11/29/2022]
Abstract
Cryoablation has been demonstrated powerful in treating of a variety of diseases, especially for the tumor ablation, which destroys the target tissue through the controlled freezing of cryoprobe. The prediction of temperature evolution during cryoablation is of great importance for developing and improving clinical procedure. This paper presented an efficient thermal model to characterize the freezing effect of cryoprobe with arbitrary layout including its size, orientation and number. The key step of the presented model is to establish a boundary heat source method to implicitly characterize the heat transfer from cryoprobe with fixed temperature or convective heat transfer boundary condition, which is furthermore incorporated to a fast parallel alternating direction explicit (PADE) finite difference method for computation acceleration. A novel dynamical and conformal computational region is designed through the shortest distance definition to balance the thermal effect of tissue and computational efficiency. The detailed test cases including a real head tissue demonstrated that the current model can accurately predict the temperature field evolution induced by arbitrary multi-cryoprobe configuration, and achieve significant computational ability due to allowable large time step (100-fold compared with the explicit finite difference method), compact computational region (at least reducing 40% number of voxels) and high parallel efficiency (speedup ratio about 8 for 12 threads) for complex tissue structure.
Collapse
Affiliation(s)
- Zhi-Zhu He
- Key Laboratory of Cryogenics, and Beijing Key Laboratory of Cryo-Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jing Liu
- Key Laboratory of Cryogenics, and Beijing Key Laboratory of Cryo-Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
He ZZ, Xue X, Xiao J, Liu J. Anatomical model-based finite element analysis of the combined cryosurgical and hyperthermic ablation for knee bone tumor. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2013; 112:356-366. [PMID: 24070544 DOI: 10.1016/j.cmpb.2013.07.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 07/25/2013] [Accepted: 07/25/2013] [Indexed: 06/02/2023]
Abstract
This paper is aimed at investigating the capacity of using combined cryosurgical and hyperthermic modality for treating knee bone tumor with complex shape. An anatomical model for human knee was constructed and a three-dimensional (3D) finite element analysis was developed to determine temperature distribution of the tissues subject to single freezing (SF), single heating (SH) and alternate freezing-heating (AFH), respectively. The heat fluxes of the probes wall and the ablation volume are particularly tracked to comparatively evaluate the ablation ability of different probe configurations with varied diameter, number and active working length. As example, an effective conformal treatment strategy via one time's insertion while cyclic freezing-heating using multiple probes is designed for a predefined knee bone tumor ablation. Both SF and SH could create large enough ablation volume, while it is hard for them to perform a conformal treatment on irregular and slender knee tumor. As an alternative, AFH could form a flexible and controlled shape and volume of the ablation by changing the size and number of the probes and adjusting their insertion depth. In addition, a thermal protection method is considered to reduce cryoinjury of the health tissue.
Collapse
Affiliation(s)
- Zhi Zhu He
- Beijing Key Laboratory of Cryo-Biomedical Engineering & Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | |
Collapse
|
6
|
Sehrawat A, Shimada K, Rabin Y. Generating prostate models by means of geometric deformation with application to computerized training of cryosurgery. Int J Comput Assist Radiol Surg 2013; 8:301-12. [PMID: 22782183 PMCID: PMC4037744 DOI: 10.1007/s11548-012-0780-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 06/21/2012] [Indexed: 11/29/2022]
Abstract
PURPOSE As a part of an ongoing project to develop computerized training tools for cryosurgery, the objective of the current study is twofold: to compile literature data on the likelihood of cancer tumor growth and its effect on the prostate shape and to present a deformation scheme for a 3D organ template in order to generate clinically relevant prostate models. The long-term objective of this study is to develop a database of prostate models for computerized training. METHODS Cryosurgery is typically performed on patients with localized prostate cancer found in stage T3 or earlier. The distribution of key geometric features likely to be found in the prostate at stage T3 is integrated into a 3D prostate template by employing the extended free-form deformation (EFFD) method. The applied scheme combines two steps: pre-selecting a set of geometric parameter values and manipulating the lattice control points until the prostate model meets the desired criteria. RESULTS Examples for model generation are displayed, based on two 3D prostate templates previously obtained from ultrasound imaging. These examples include selected cases with unilateral and bilateral stage T3 tumor growth, suitable for incorporation into a training database. CONCLUSIONS EFFD is an efficient method for rapid generation of prostate models. The compiled criteria for model generation do not lead to a unique shape since the contours for template deformation are randomly selected. Nevertheless, these criteria do lead to shapes resembling cancer growth, as various growth histories can lead to a tumor characterized by the same key parameter values.
Collapse
Affiliation(s)
- Anjali Sehrawat
- Department of Mechanical Engineering Carnegie Mellon University Pittsburgh, PA 15213
| | - Kenji Shimada
- Department of Mechanical Engineering Carnegie Mellon University Pittsburgh, PA 15213
| | - Yoed Rabin
- Department of Mechanical Engineering Carnegie Mellon University Pittsburgh, PA 15213
| |
Collapse
|
7
|
Yang G, Zhang A, Xu LX. Intracellular ice formation and growth in MCF-7 cancer cells. Cryobiology 2011; 63:38-45. [PMID: 21536022 DOI: 10.1016/j.cryobiol.2011.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 03/15/2011] [Accepted: 04/13/2011] [Indexed: 12/11/2022]
Affiliation(s)
- Geer Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, PR China
| | | | | |
Collapse
|
8
|
Gage AA, Baust JM, Baust JG. Experimental cryosurgery investigations in vivo. Cryobiology 2009; 59:229-43. [PMID: 19833119 DOI: 10.1016/j.cryobiol.2009.10.001] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/30/2009] [Accepted: 10/01/2009] [Indexed: 12/16/2022]
Abstract
Cryosurgery is the use of freezing temperatures to elicit an ablative response in a targeted tissue. This review provides a global overview of experimentation in vivo which has been the basis of advancement of this widely applied therapeutic option. The cellular and tissue-related events that underlie the mechanisms of destruction, including direct cell injury (cryolysis), vascular stasis, apoptosis and necrosis, are described and are related to the optimal methods of technique of freezing to achieve efficacious therapy. In vivo experiments with major organs, including wound healing, the putative immunological response following thawing, and the use of cryoadjunctive strategies to enhance cancer cell sensitivity to freezing, are described.
Collapse
Affiliation(s)
- A A Gage
- Department of Surgery, SUNY Buffalo, Buffalo, NY, USA
| | | | | |
Collapse
|