1
|
Abstract
Vitrification is an alternative to cryopreservation by freezing that enables hydrated living cells to be cooled to cryogenic temperatures in the absence of ice. Vitrification simplifies and frequently improves cryopreservation because it eliminates mechanical injury from ice, eliminates the need to find optimal cooling and warming rates, eliminates the importance of differing optimal cooling and warming rates for cells in mixed cell type populations, eliminates the need to find a frequently imperfect compromise between solution effects injury and intracellular ice formation, and can enable chilling injury to be "outrun" by using rapid cooling without a risk of intracellular ice formation. On the other hand, vitrification requires much higher concentrations of cryoprotectants than cryopreservation by freezing, which introduces greater risks of both osmotic damage and cryoprotectant toxicity. Fortunately, a large number of remedies for the latter problem have been discovered over the past 35 years, and osmotic damage can in most cases be eliminated or adequately controlled by paying careful attention to cryoprotectant introduction and washout techniques. Vitrification therefore has the potential to enable the superior and convenient cryopreservation of a wide range of biological systems (including molecules, cells, tissues, organs, and even some whole organisms), and it is also increasingly recognized as a successful strategy for surviving harsh environmental conditions in nature. But the potential of vitrification is sometimes limited by an insufficient understanding of the complex physical and biological principles involved, and therefore a better understanding may not only help to improve present outcomes but may also point the way to new strategies that may be yet more successful in the future. This chapter accordingly describes the basic principles of vitrification and indicates the broad potential biological relevance of this alternative method of cryopreservation.
Collapse
|
2
|
Ren L, Deng S, Chu Y, Zhang Y, Zhao H, Chen H, Zhang D. Single-wall carbon nanotubes improve cell survival rate and reduce oxidative injury in cryopreservation of Agapanthus praecox embryogenic callus. PLANT METHODS 2020; 16:130. [PMID: 32973916 PMCID: PMC7507619 DOI: 10.1186/s13007-020-00674-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/15/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND Cryopreservation is the best way for long-term in vitro preservation of plant germplasm resources. The preliminary studies found that reactive oxygen species (ROS) induced oxidative stress and ice-induced membrane damage are the fundamental causes of cell death in cryopreserved samples. How to improve plant cryopreservation survival rate is an important scientific issue in the cryobiology field. RESULTS This study found that the survival rate was significantly improved by adding single-wall carbon nanotubes (SWCNTs) to plant vitrification solution (PVS) in cryopreservation of Agapanthus praecox embryogenic callus (EC), and analyzed the oxidative response of cells during the control and SWCNTs-added cryopreservation protocol. The SWCNTs entered EC at the step of dehydration and mainly located around the cell wall and in the vesicles, and most of SWCNTs moved out of EC during the dilution step. Combination with physiological index and gene quantitative expression results, SWCNTs affect the ROS signal transduction and antioxidant system response during plant cryopreservation. The EC treated by SWCNTs had higher antioxidant levels, like POD, CAT, and GSH than the control group EC. The EC mainly depended on the AsA-GSH and GPX cycle to scavenge H2O2 in the control cryopreservation, but depended on CAT in the SWCNTs-added cryopreservation which lead to low levels of H2O2 and MDA. The elevated antioxidant level in dehydration by adding SWCNTs enhanced cells resistance to injury during cryopreservation. The ROS signals of EC were balanced and stable in the SWCNTs-added cryopreservation. CONCLUSIONS The SWCNTs regulated oxidative stress responses of EC during the process and controlled oxidative damages by the maintenance of ROS homeostasis to achieve a high survival rate after cryopreservation. This study is the first to systematically describe the role of carbon nanomaterial in the regulation of plant oxidative stress response, and provided a novel insight into the application of nanomaterials in the field of cryobiology.
Collapse
Affiliation(s)
- Li Ren
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, NO. 888, Rd. Yezhuang, Shanghai, 201403 China
| | - Shan Deng
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, NO. 888, Rd. Yezhuang, Shanghai, 201403 China
| | - Yunxia Chu
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, NO. 888, Rd. Yezhuang, Shanghai, 201403 China
| | - Yiying Zhang
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, NO. 888, Rd. Yezhuang, Shanghai, 201403 China
| | - Hong Zhao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, NO. 888, Rd. Yezhuang, Shanghai, 201403 China
| | - Hairong Chen
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, NO. 888, Rd. Yezhuang, Shanghai, 201403 China
| | - Di Zhang
- Department of Landscape Science and Engineering, School of Design, Shanghai Jiao Tong University, NO. 800, Rd. Dong Chuan, Shanghai, 200240 China
| |
Collapse
|
3
|
Fujikawa S, Kuwabara C, Kasuga J, Arakawa K. Supercooling-Promoting (Anti-ice Nucleation) Substances. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:289-320. [PMID: 30288716 DOI: 10.1007/978-981-13-1244-1_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Studies on supercooling-promoting substances (SCPSs) are reviewed introducing name of chemicals, experimental conditions and the supercooling capability (SCC) in all, so far recognized, reported SCPSs and results of our original study are presented in order to totally show the functional properties of SCPSs which are known in the present state. Many kinds of substances have been identified as SCPSs that promote supercooling of aqueous solutions in a non-colligative manner by reducing the ice nucleation capability (INC) of ice nucleators (INs). The SCC as revealed by reduction of freezing temperature (°C) by SCPSs differs greatly depending on the INs. While no single SCPS that affects homogeneous ice nucleation to reduce ice nucleation point has been found, many SCPSs have been found to reduce freezing temperatures by heterogeneous ice nucleation with a large fluctuation of SCC depending on the kind of heterogeneous IN. Not only SCPSs increase the degree of SCC (°C), but also some SCPSs have additional SCC to stabilize a supercooling state for a long term to stabilize supercooling against strong mechanical disturbance and to reduce sublimation of ice crystals. The mechanisms underlying the diverse functions of SCPSs remain to be determined in future studies.
Collapse
Affiliation(s)
- Seizo Fujikawa
- Research Faculty and Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.
| | - Chikako Kuwabara
- Research Faculty and Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Jun Kasuga
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Keita Arakawa
- Research Faculty and Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Elliott GD, Wang S, Fuller BJ. Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 2017; 76:74-91. [DOI: 10.1016/j.cryobiol.2017.04.004] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 04/07/2017] [Accepted: 04/16/2017] [Indexed: 02/08/2023]
|
5
|
Kawahara H, Matsuda Y, Sakaguchi T, Arai N, Koide Y. Antifreeze Activity of Xylomannan from the Mycelium and Fruit Body of Flammulina velutipes. Biocontrol Sci 2017; 21:153-9. [PMID: 27667520 DOI: 10.4265/bio.21.153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
An identified class of antifreeze, a xylomannan-based thermal hysteresis (TH)-producing glycolipid, has been discovered from diverse taxa, including plants, insects, and amphibians. We isolated xylomannan from the mycelium and fruit body of the basidiomycete Flammulina velutipes using successive hot extraction with water, 2% and 25% aqueous KOH, and gel filtration chromatography. The xylomannan from the fruit body had a recrystallization inhibiting (RI) activity (RI=0.44) at 0.5 mg/mL. The dried weight yield of the fruit body (7.7×10(-2)%, w/w) was higher than that of the mycelium. Although the purified xylomannan from both soures were composed of mannose and xylose in a 2 : 1 molar ratio, the molecular weight of the xylomannan from the mycelium and fruit body was 320,000 and 240,000, respectively. The RI activity of mycelial xylomannan was higher than that from the fruit body (RI=0.57) at 45 µg/mL. Although this RI activity was able to remain constant after exposure to various conditions, we confirmed that the decrease of RI activity was stimulated by the decrease of molecular weight that was caused by heating during the alkaline condition. The survival rate of the CHO cells at -20℃ for two days increased to 97% due to the addition of 20 µg/mL of purified xylomannan. This was the first report to indicate that xylomannan from the mycelium of Flammulina velutipes had a high level of ice recrystallization inhibiting activity like antifreeze proteins from plants and had rhe potential to become a new material for cell storage.
Collapse
|
6
|
Kuwabara C, Terauchi R, Tochigi H, Takaoka H, Arakawa K, Fujikawa S. Analysis of supercooling activities of surfactants. Cryobiology 2014; 69:10-6. [PMID: 24792543 DOI: 10.1016/j.cryobiol.2014.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/18/2014] [Accepted: 04/21/2014] [Indexed: 11/30/2022]
Abstract
Supercooling-promoting activities (SCAs) of 25 kinds of surfactants including non-ionic, anionic, cationic and amphoteric types were examined in solutions (buffered Milli-Q water, BMQW) containing the ice nucleation bacterium (INB) Erwinia ananas, silver iodide (AgI) or BMQW alone, which unintentionally contained unidentified ice nucleators, by a droplet freezing assay. Most of the surfactants exhibited SCA in solutions containing AgI but not in solutions containing the INB E. ananas or BMQW alone. SCAs of many surfactants in solutions containing AgI were very high compared with those of previously reported supercooling-promoting substances. Cationic surfactants, hexadecyltrimethylammonium bromide (C16TAB) and hexadecyltrimethylammonium chloride (C16TAC), at concentrations of 0.01% (w/v) exhibited SCA of 11.8 °C, which is the highest SCA so far reported. These surfactants also showed high SCAs at very low concentrations in solutions containing AgI. C16TAB exhibited SCA of 5.7 °C at a concentration of 0.0005% (w/v).
Collapse
Affiliation(s)
- Chikako Kuwabara
- Research Faculty and Graduate School of Agriculture, Hokkaido University, Sapporo 060-0805, Japan
| | - Ryuji Terauchi
- New Product Development Office, COSMO-OIL LUBRICANTS Co., Ltd., 1134-2 Gongendo, Saitama 340-0193, Japan
| | - Hiroshi Tochigi
- New Product Development Office, COSMO-OIL LUBRICANTS Co., Ltd., 1134-2 Gongendo, Saitama 340-0193, Japan
| | - Hisao Takaoka
- New Product Development Office, COSMO-OIL LUBRICANTS Co., Ltd., 1134-2 Gongendo, Saitama 340-0193, Japan
| | - Keita Arakawa
- Research Faculty and Graduate School of Agriculture, Hokkaido University, Sapporo 060-0805, Japan
| | - Seizo Fujikawa
- Research Faculty and Graduate School of Agriculture, Hokkaido University, Sapporo 060-0805, Japan.
| |
Collapse
|
7
|
A Preliminary Study on Cryopreservation Protocol Applicable to all Types ofDiospyros KakiThunb. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.2478/v10133-010-0052-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Kuwabara C, Wang D, Endoh K, Fukushi Y, Arakawa K, Fujikawa S. Analysis of supercooling activity of tannin-related polyphenols. Cryobiology 2013; 67:40-9. [PMID: 23644016 DOI: 10.1016/j.cryobiol.2013.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 04/09/2013] [Accepted: 04/23/2013] [Indexed: 10/26/2022]
Abstract
Based on the discovery of novel supercooling-promoting hydrolyzable gallotannins from deep supercooling xylem parenchyma cells (XPCs) in Katsura tree (see Wang et al. (2012) [38]), supercooling capability of a wide variety of tannin-related polyphenols (TRPs) was examined in order to find more effective supercooling-promoting substances for their applications. The TRPs examined were single compounds including six kinds of hydrolyzable tannins, 11 kinds of catechin derivatives, two kinds of structural analogs of catechin and six kinds of phenolcarboxylic acid derivatives, 11 kinds of polyphenol mixtures and five kinds of crude plant tannin extracts. The effects of these TRPs on freezing were examined by droplet freezing assays using various solutions containing different kinds of identified ice nucleators such as the ice nucleation bacterium (INB) Erwinia ananas, the INB Xanthomonas campestris, silver iodide and phloroglucinol as well as a solution containing only unintentionally included unidentified airborne ice nucleators. Among the 41 kinds of TRPs examined, all of the hydrolyzable tannins, catechin derivatives, polyphenol mixtures and crude plant tannin extracts as well as a few structural analogs of catechin and phenolcarboxylic acid derivatives exhibited supercooling-promoting activity (SCA) with significant differences (p>0.05) from at least one of the solutions containing different kinds of ice nucleators. It should be noted that there were no TRPs exhibiting ice nucleation-enhancing activity (INA) in all solutions containing identified ice nucleators, whereas there were many TRPs exhibiting INA with significant differences in solutions containing unidentified ice nucleators alone. An emulsion freezing assay confirmed that these TRPs did not essentially affect homogeneous ice nucleation temperatures. It is thought that not only SCA but also INA in the TRPs are produced by interactions with heterogeneous ice nucleators, not by direct interaction with water molecules. In the present study, several TRPs that might be useful for applications due to their high SCA in many solutions were identified.
Collapse
Affiliation(s)
- Chikako Kuwabara
- Research Faculty and Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Kuwabara C, Wang D, Kasuga J, Fukushi Y, Arakawa K, Koyama T, Inada T, Fujikawa S. Freezing activities of flavonoids in solutions containing different ice nucleators. Cryobiology 2012; 64:279-85. [PMID: 22406212 DOI: 10.1016/j.cryobiol.2012.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/01/2012] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
Abstract
In this study, we examined the effects on freezing of 26 kinds of flavonoid compounds, which were randomly selected as compounds with structures similar to those of flavonoid compounds existing in deep supercooling xylem parenchyma cells (XPCs) in trees, in solutions containing different kinds of ice nucleators, including the ice nucleation bacterium (INB) Erwinia ananas, INB Xanthomonas campestris, silver iodide, phloroglucinol and unidentified airborne impurities in buffered Milli-Q water (BMQW). Cumulative freezing spectra were obtained in each solution by cooling 2 μL droplets at 0.2 °C/min by a droplet freezing assay. Freezing temperature of 50% droplets (FT(50)) was obtained from each spectra in a separate analysis with more than 20 droplets and mean FT(50) were obtained from more than five separate analyses using more than 100 droplets in total in each flavonoid. Supercooling-promoting activities (SCA) or ice nucleation-enhancing activities (INA) of these flavonoids were determined by the difference in FT(50) between control solutions without flavonoids and experimental solutions with flavonoids. In mean values, most of the compounds examined exhibited SCA in solutions containing the INB E. ananas, INB X. campestris, silver iodide, and phloroglucinol although the magnitudes of their activities were different depending on the ice nucleator. In solutions containing the INB E. ananas, 10 compounds exhibited SCAs with significant differences (p<0.05) in the range of 1.4-4.2 °C. In solutions containing silver iodide, 23 compounds exhibited SCAs with significant differences in the range of 2.0-7.1 °C. In solutions containing phloroglucinol, six compounds exhibited SCAs with significant differences in the range of 2.4-3.5 °C. In solutions containing the INB X. campestris, only three compounds exhibited SCAs with significant differences in the range of 0.9-2.3 °C. In solutions containing unidentified airborne impurities (BMQW alone), on the other hand, many compounds exhibited INA rather than SCA. In mean values, only four compounds exhibited SCAs in the range of 2.4-3.2 °C (no compounds with significant difference at p<0.05), whereas 21 compounds exhibited INAs in the range of 0.1-12.3 °C (eight compounds with significant difference). It was also shown by an emulsion freezing assay that most flavonoid glycosides examined did not affect homogeneous ice nucleation temperatures, except for a few compounds that become ice nucleators in BMQW alone. These results suggest that most flavonoid compounds affect freezing temperatures by interaction with unidentified ice nucleators in BMQW as examined by a droplet freezing assay. The results of our previous and present studies indicate that flavonoid compounds have very complex effects to regulate freezing of water.
Collapse
Affiliation(s)
- Chikako Kuwabara
- Research Faculty and Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lee SY, Huang GW, Shiung JN, Huang YH, Jeng JH, Kuo TF, Yang JC, Yang WCV. Magnetic Cryopreservation for Dental Pulp Stem Cells. Cells Tissues Organs 2012; 196:23-33. [DOI: 10.1159/000331247] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2011] [Indexed: 01/06/2023] Open
|
11
|
Inada T, Koyama T, Goto F, Seto T. Ice nucleation in emulsified aqueous solutions of antifreeze protein type III and poly(vinyl alcohol). J Phys Chem B 2011; 115:7914-22. [PMID: 21619040 DOI: 10.1021/jp111745v] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Antifreeze protein (AFP) III and poly(vinyl alcohol) (PVA) are known as anti-ice nucleating agents (anti-INAs), which inhibit heterogeneous ice nucleation. However, the effectiveness of these anti-INAs in inhibiting ice nucleation in water-in-oil (W/O) emulsions, in which homogeneous ice nucleation can be experimentally simulated, is unclear. In this study, the ice nucleation temperature in emulsified solutions of AFP III, PVA, and other nonanti-INA polymers was measured, and then the nucleation rate was analyzed based on classical nucleation theory. Results showed that ice nucleation was surface-initiated and, except for PVA solutions, probably caused heterogeneously by the emulsifier, SPAN 65, at the droplet surfaces. In this nucleation mode, AFP III had no significant effect on the ice nucleation rate. In contrast, PVA exhibited ice-nucleating activity only at the droplet surfaces, suggesting that the nucleation is due to the interaction between PVA and SPAN 65.
Collapse
Affiliation(s)
- Takaaki Inada
- National Institute of Advanced Industrial Science and Technology, Namiki 1-2-1, Tsukuba, Ibaraki 305-8564, Japan.
| | | | | | | |
Collapse
|
12
|
Inhibition of nucleation and growth of ice by poly(vinyl alcohol) in vitrification solution. Cryobiology 2009; 59:83-9. [DOI: 10.1016/j.cryobiol.2009.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/16/2009] [Accepted: 04/16/2009] [Indexed: 11/19/2022]
|
13
|
Abstract
Vitrification is a process in which a liquid begins to behave as a solid during cooling without any substantial change in molecular arrangement or thermodynamic state variables. The physical phenomenon of vitrification is relevant to both cryopreservation by freezing, in which cells survive in glass between ice crystals, and cryopreservation by vitrification in which a whole sample is vitrified. The change from liquid to solid behavior is called the glass transition. It is coincident with liquid viscosity reaching 10(13) Poise during cooling, which corresponds to a shear stress relaxation time of several minutes. The glass transition can be understood on a molecular level as a loss of rotational and translational degrees of freedom over a particular measurement timescale, leaving only bond vibration within a fixed molecular structure. Reduced freedom of molecular movement results in decreased heat capacity and thermal expansivity in glass relative to the liquid state. In cryoprotectant solutions, the change from liquid to solid properties happens over a approximately 10 degrees C temperature interval centered on a glass transition temperature, typically near -120 degrees C (+/-10 degrees C) for solutions used for vitrification. Loss of freedom to quickly rearrange molecular position causes liquids to depart from thermodynamic equilibrium as they turn into a glass during vitrification. Residual molecular mobility below the glass transition temperature allows glass to very slowly contract, release heat, and decrease entropy during relaxation toward equilibrium. Although diffusion is practically non-existent below the glass transition temperature, small local movements of molecules related to relaxation have consequences for cryobiology. In particular, ice nucleation in supercooled vitrification solutions occurs at remarkable speed until at least 15 degrees C below the glass transition temperature.
Collapse
Affiliation(s)
- Brian Wowk
- 21st Century Medicine, Inc., 14960 Hilton Drive, Fontana, CA 92336, USA.
| |
Collapse
|