1
|
Comizzoli P, Amelkina O, Lee PC. Damages and stress responses in sperm cells and other germplasms during dehydration and storage at nonfreezing temperatures for fertility preservation. Mol Reprod Dev 2022; 89:565-578. [PMID: 36370428 DOI: 10.1002/mrd.23651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Long-term preservation of sperm, oocytes, and gonadal tissues at ambient temperatures has the potential to lower the costs and simplify biobanking in human reproductive medicine, as well as for the management of animal populations. Over the past decades, different dehydration protocols and long-term storage solutions at nonfreezing temperatures have been explored, mainly for mammalian sperm cells. Oocytes and gonadal tissues are more challenging to dehydrate so little to no progress have been made. Currently, the detrimental effects of the drying process itself are better characterized than the impact of long-term storage at nonfreezing temperatures. While structural and functional properties of germ cells can be preserved after dehydration, a long list of damages and stresses in nuclei, organelles, and cytoplasmic membranes have been reported and sometimes mitigated. Characterizing those damages and better understanding the response of germ cells and tissues to the stress of dehydration is fundamental. It will contribute to the development of optimal protocols while proving the safety of alternative storage options for fertility preservation. The objective of this review is to (1) document the types of damages and stress responses, as well as their mitigation in cells dried with different techniques, and (2) propose new research directions.
Collapse
Affiliation(s)
- Pierre Comizzoli
- Smithsonian's National Zoo and Conservation Biology Institute, Veterinary Hospital, Washington, District of Columbia, USA
| | - Olga Amelkina
- Smithsonian's National Zoo and Conservation Biology Institute, Veterinary Hospital, Washington, District of Columbia, USA
| | - Pei-Chih Lee
- Smithsonian's National Zoo and Conservation Biology Institute, Veterinary Hospital, Washington, District of Columbia, USA
| |
Collapse
|
2
|
Brogna R, Fan J, Sieme H, Wolkers WF, Oldenhof H. Drying and temperature induced conformational changes of nucleic acids and stallion sperm chromatin in trehalose preservation formulations. Sci Rep 2021; 11:14076. [PMID: 34234244 PMCID: PMC8263733 DOI: 10.1038/s41598-021-93569-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/23/2021] [Indexed: 12/27/2022] Open
Abstract
Even though dried sperm is not viable, it can be used for fertilization as long as its chromatin remains intact. In this study, we investigated drying- and temperature-induced conformational changes of nucleic acids and stallion sperm chromatin. Sperm was diluted in preservation formulations with and without sugar/albumin and subjected to convective drying at elevated temperatures on glass substrates. Accumulation of reactive oxygen species was studied during storage at different temperatures, and the sperm chromatin structure assay was used to assess DNA damage. Fourier transform infrared spectroscopy was used to identify dehydration and storage induced conformational changes in isolated DNA and sperm chromatin. Furthermore, hydrogen bonding in the preservation solutions associated with storage stability were investigated. Reactive oxygen species and DNA damage in dried sperm samples were found to accumulate with increasing storage temperature and storage duration. Non-reducing disaccharides (i.e., trehalose, sucrose) and albumin counteracted oxidative stress and preserved sperm chromatin during dried storage, whereas glucose increased DNA damage during storage. When sperm was dried in the presence of trehalose and albumin, no spectral changes were detected during storage at refrigeration temperatures, whereas under accelerated aging conditions, i.e., storage at 37 °C, spectral changes were detected indicating alterations in sperm chromatin structure.
Collapse
Affiliation(s)
- Raffaele Brogna
- Biostabilization Laboratory, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Hannover, Germany
- Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover, Bünteweg 15, 30559, Hannover, Germany
| | - Juezhu Fan
- Biostabilization Laboratory, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harald Sieme
- Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover, Bünteweg 15, 30559, Hannover, Germany
| | - Willem F Wolkers
- Biostabilization Laboratory, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Hannover, Germany
- Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover, Bünteweg 15, 30559, Hannover, Germany
| | - Harriëtte Oldenhof
- Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover, Bünteweg 15, 30559, Hannover, Germany.
| |
Collapse
|
3
|
Rockinger U, Funk M, Winter G. Current Approaches of Preservation of Cells During (freeze-) Drying. J Pharm Sci 2021; 110:2873-2893. [PMID: 33933434 DOI: 10.1016/j.xphs.2021.04.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 03/13/2021] [Accepted: 04/20/2021] [Indexed: 11/20/2022]
Abstract
The widespread application of therapeutic cells requires a successful stabilization of cells for the duration of transport and storage. Cryopreservation is currently considered the gold standard for the storage of active cells; however, (freeze-) drying cells could enable higher shelf life stability at ambient temperatures and facilitate easier transport and storage. During (freeze-) drying, freezing, (primary and secondary) drying and also the reconstitution step pose the risk of potential cell damage. To prevent these damaging processes, a wide range of protecting excipients has emerged, which can be classified, according to their chemical affiliation, into sugars, macromolecules, polyols, antioxidants and chelating agents. As many excipients cannot easily permeate the cell membrane, researchers have established various techniques to introduce especially trehalose intracellularly, prior to drying. This review aims to summarize the main damaging mechanisms during (freeze-) drying and to introduce the most common excipients with further details on their stabilizing properties and process approaches for the intracellular loading of excipients. Additionally, we would like to briefly explain recently discovered advantages of drying microorganisms, sperm, platelets, red blood cells, and eukaryotic cells, paying particular attention to the drying technique and residual moisture content.
Collapse
Affiliation(s)
- Ute Rockinger
- Ludwig-Maximilians-Universität München, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Munich, Germany.
| | - Martin Funk
- QRSKIN GmbH, Friedrich-Bergius-Ring 15, Würzburg, Germany
| | - Gerhard Winter
- Ludwig-Maximilians-Universität München, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Munich, Germany
| |
Collapse
|
4
|
Carretero MI, Arraztoa CC, Fumuso FG, Chaves MG, Santa Cruz RC, Neild DM. Dehydration of llama sperm using different osmolarity media and temperatures for preservation. Anim Reprod Sci 2020; 225:106683. [PMID: 33388611 DOI: 10.1016/j.anireprosci.2020.106683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/26/2022]
Abstract
The objective of this study was to evaluate effects of dehydration on sperm DNA with the aim of eventually using this method for preserving llama spermatozoa. Two experiments were conducted: 1) sperm preservation at 5 °C for 60 days in different hyperosmotic solutions (500, 800, 1000 and 1200 mOsmol/l) (n = 6, replications = 2) and 2) sperm preservation at 5 and -20 °C for 60 days in the same hyperosmotic solutions, with supplementary antibiotics (n = 6, replications = 2). Sperm motility, membrane functional integrity, viability and morphology were evaluated at 0 and 48 h of the preservation period (Experiment 1) and at 30 min and 24 h (Experiment 2). Sperm DNA was evaluated at 0 or 30 min (Experiment 1 and 2, respectively) and on days 7, 14, 21, 30 and 60 of the preservation periods. Motility, membrane functional integrity and viability were less when sperm were dehydrated, while sperm cell morphology was not affected. There was a smaller percentage of sperm with condensed chromatin as duration of the preservation period increased when stored in the different hyperosmotic solutions. There was a markedly smaller (P < 0.05) percentage of sperm with intact DNA in all solutions as the duration of preservation increased, with there being greater values for intact DNA at -20 °C than sperm preserved at 5 °C. Llama sperm chromatin condensation was slightly affected by the process of dehydration. There was a markedly smaller percentage of sperm with intact DNA in the dehydrated semen samples.
Collapse
Affiliation(s)
- María Ignacia Carretero
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Claudia Cecilia Arraztoa
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Argentina
| | - Fernanda Gabriela Fumuso
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Graciela Chaves
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Argentina
| | - Romina Carla Santa Cruz
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Argentina
| | - Deborah Margarita Neild
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Argentina
| |
Collapse
|
5
|
Carretero MI, Chaves MG, Arraztoa CC, Fumuso FG, Gambarotta MC, Neild DM. Air-Drying Llama Sperm Affects DNA Integrity. Front Vet Sci 2020; 7:597952. [PMID: 33363235 PMCID: PMC7758352 DOI: 10.3389/fvets.2020.597952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/19/2020] [Indexed: 11/30/2022] Open
Abstract
The objective of this study was to evaluate the effects of air-drying preservation on llama sperm DNA. Semen collections were carried out using electroejaculation under general anesthesia. A total of 16 ejaculates were processed from 4 males (n = 4, r = 4). Each sample was diluted 4:1 in a collagenase solution in TALP media, then incubated and centrifuged at 800 g for 8 min. The pellet was re-suspended to a concentration of 20 million sperm/ml in TALP. Then the samples were placed onto sterile slides forming lines and were left to dry under laminar flow for 15 min. After this, the slides were placed into Falcon centrifuge tubes and kept at 5°C. Sperm characteristics (motility, membrane function, viability and morphology) were evaluated in raw semen and in the air-dried samples kept at 5°C for 30 min. DNA evaluation (integrity and degree of chromatin condensation) was carried out in raw semen and in the air-dried samples after 30 min, 7, 14, 21, 30, and 60 days after preservation. To compare raw semen to the air-dried samples, a Wilcoxon test was used for all sperm characteristics except for DNA, where a paired Student t-test was applied. A split plot design was used to compare chromatin condensation between the different periods of preservation and a Kruskal Wallis test was used to compare DNA integrity. Motility, membrane function, viability and sperm with intact DNA decreased in the air-dried samples (p < 0.05), while morphology and chromatin condensation were not affected (p > 0.05). No significant differences were observed in the percentage of sperm with condensed chromatin between the different periods of preservation (p > 0.05). On the other hand, a significant decrease in the percentage of sperm with intact DNA was observed as from day 7 of preservation (p < 0.05). In conclusion the air-drying process has a negative effect on llama sperm DNA, hence the media used will need to be improved to protect DNA and be able to implement this technique in this species.
Collapse
Affiliation(s)
- María Ignacia Carretero
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigación y Tecnología en Reproducción Animal, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Graciela Chaves
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigación y Tecnología en Reproducción Animal, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Claudia Cecilia Arraztoa
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigación y Tecnología en Reproducción Animal, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernanda Gabriela Fumuso
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigación y Tecnología en Reproducción Animal, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Deborah Margarita Neild
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigación y Tecnología en Reproducción Animal, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Fumuso FG, Giuliano SM, Chaves G, Neild DM, Miragaya MH, Bertuzzi ML, Carretero MI. Incubation of frozen-thawed llama sperm with seminal plasma. Andrologia 2020; 52:e13597. [PMID: 32352585 DOI: 10.1111/and.13597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/01/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
Seminal plasma is intimately connected to sperm physiology and particularly in South American Camelids, has demonstrated to be involved in multiple physiological reproductive events. Different percentages of seminal plasma (0%, 10% and 50%) were added to thawed llama semen samples with the objective of evaluating the interaction with cryopreserved sperm over time (0, 1.5 and 3 hr at 37°C). A total of 20 ejaculates from five adult llama males (n = 5; r = 4) were evaluated. A significant decrease in sperm motility, membrane function and live sperm was observed in all thawed samples (0%, 10% and 50%) at 0 hr when compared to raw semen. Neither morphology nor chromatin condensation was altered in all thawed samples (p > .05), but a significant increase in the percentage of spermatozoa with fragmented DNA was observed after thawing all samples versus raw semen. When evaluating thawed samples over time, a significant decrease of motility and membrane function was observed, while the percentages of total live sperm were preserved over the 3 hr of incubation in all final concentrations evaluated. To conclude, the addition of 10% or 50% of seminal plasma was incapable of preserving motility or membrane function of frozen-thawed llama sperm during 3 hr of incubation.
Collapse
Affiliation(s)
- Fernanda Gabriela Fumuso
- University of Buenos Aires, Faculty of Veterinary Sciences, Department of Theriogenology, Institute of Research and Technology in Animal Reproduction (INITRA), Buenos Aires, Argentina.,National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Susana Marí Giuliano
- University of Buenos Aires, Faculty of Veterinary Sciences, Department of Theriogenology, Institute of Research and Technology in Animal Reproduction (INITRA), Buenos Aires, Argentina
| | - Graciela Chaves
- University of Buenos Aires, Faculty of Veterinary Sciences, Department of Theriogenology, Institute of Research and Technology in Animal Reproduction (INITRA), Buenos Aires, Argentina
| | - Deborah M Neild
- University of Buenos Aires, Faculty of Veterinary Sciences, Department of Theriogenology, Institute of Research and Technology in Animal Reproduction (INITRA), Buenos Aires, Argentina
| | - Marcelo Horacio Miragaya
- University of Buenos Aires, Faculty of Veterinary Sciences, Department of Theriogenology, Institute of Research and Technology in Animal Reproduction (INITRA), Buenos Aires, Argentina
| | - Mariana LucÍa Bertuzzi
- University of Buenos Aires, Faculty of Veterinary Sciences, Department of Theriogenology, Institute of Research and Technology in Animal Reproduction (INITRA), Buenos Aires, Argentina
| | - Maria Ignacia Carretero
- University of Buenos Aires, Faculty of Veterinary Sciences, Department of Theriogenology, Institute of Research and Technology in Animal Reproduction (INITRA), Buenos Aires, Argentina.,National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| |
Collapse
|
7
|
Yu G, Li R, Hubel A. Interfacial Interactions of Sucrose during Cryopreservation Detected by Raman Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7388-7395. [PMID: 30398347 PMCID: PMC8023323 DOI: 10.1021/acs.langmuir.8b01616] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
There is considerable interest in the use of sugars to preserve cells. In this study, low temperature Raman spectroscopy was used to characterize the behaviors of sucrose during freezing. The hydrogen bond network between sucrose and water was investigated at -10 °C and -50 °C, and the Raman spectra showed strengthened sucrose-water and sucrose-sucrose hydrogen bonds in more concentrated sucrose solution at -50 °C. The concentration of sucrose at the ice interface increased as the ice density decreased, and it plateaued across a narrow channel of nonfrozen sucrose solution before it decreased toward the next ice interface. The biophysical environment at interfaces between the cell and nonfrozen sucrose solution and between the cell and extracellular ice was also studied. A thin layer of nonfrozen sucrose solution was observed at the interface between the cell and extracellular ice. The extracellular concentration of sucrose at this interface was generally lower than that of bulk nonfrozen sucrose solution. The variation of sucrose concentration outside different regions of the cell membrane suggests that the chemical environment around the cell during freezing may be more heterogeneous than previously thought. Raman spectra and images also showed colocalization of nonfrozen sucrose solution and the cell, which implied that direct interaction between sucrose and cell membrane might be responsible for protective properties of sucrose. Sucrose was predominantly distributed outside the cell, and the observation of strong partitioning of sucrose across the cell membrane is consistent with substantial cell dehydration detected by the Raman spectra. This work enhances our understanding of the behaviors of sucrose solution and its interactions with cells at low temperature and can improve cryopreservation protocols of cells frozen in a sucrose-based media.
Collapse
Affiliation(s)
- Guanglin Yu
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rui Li
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Allison Hubel
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Ito D, Wakayama S, Kamada Y, Shibasaki I, Kamimura S, Ooga M, Wakayama T. Effect of trehalose on the preservation of freeze-dried mice spermatozoa at room temperature. J Reprod Dev 2019; 65:353-359. [PMID: 31118350 PMCID: PMC6708850 DOI: 10.1262/jrd.2019-058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Freeze-drying of spermatozoa is a convenient and safe method to preserve mammalian genetic material without the use of liquid nitrogen or a deep freezer. However, freeze-dried spermatozoa
(FD sperm) are not frequently used because of the low success rate of offspring after intracytoplasmic spermatozoa injection (ICSI). In this study, we determined the optimal concentration
and a point of action of trehalose as a protectant for the preservation of FD sperm from different mouse strains at room temperature (RT). Although trehalose demonstrated no potential to
protect the FD sperm of ICR mice against the freeze-drying procedure itself, the blastocyst rate was significantly improved when FD sperm was preserved for more than 1 month at RT (56–63%
vs. 29% without trehalose). The optimal concentration of trehalose was 0.5 M. Importantly, remarkable results were obtained when spermatozoa of inbred mouse strains
(C57BL/6N, C3H/He, and 129/Sv) were used, and many offspring were obtained when FD sperm that was preserved for 3 months at RT (26–28% vs. 6–11% of without trehalose) was
used. However, when DNA damage in FD sperm was examined by gamma-H2Ax assays, it was found that trehalose failed to protect the FD sperm from DNA damage. These results suggest that trehalose
has the potential to protect other sperm factors rather than sperm DNA during preservation at RT for longer periods and trehalose is more effective for inbred mouse strains.
Collapse
Affiliation(s)
- Daiyu Ito
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Kofu 400-8510, Japan
| | - Yuko Kamada
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan.,Present: Kameda Medical Center, Chiba 296-8602, Japan
| | - Ikue Shibasaki
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan.,Present: RIKEN Center for Brain Science (CBS), Wako 351-0198, Japan
| | - Satoshi Kamimura
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan.,Present: Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Masatoshi Ooga
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan.,Advanced Biotechnology Center, University of Yamanashi, Kofu 400-8510, Japan
| |
Collapse
|
9
|
Exploring dry storage as an alternative biobanking strategy inspired by Nature. Theriogenology 2019; 126:17-27. [DOI: 10.1016/j.theriogenology.2018.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/20/2018] [Accepted: 11/25/2018] [Indexed: 12/13/2022]
|
10
|
Hagedorn M, Varga Z, Walter RB, Tiersch TR. Workshop report: Cryopreservation of aquatic biomedical models. Cryobiology 2019; 86:120-129. [PMID: 30389588 PMCID: PMC9903301 DOI: 10.1016/j.cryobiol.2018.10.264] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023]
Abstract
The genetic resources of aquatic biomedical model organisms are the products of millions of years of evolution, decades of scientific development, and hundreds of millions of dollars of research funding investment. Genetic resources (e.g., specific alleles, transgenes, or combinations) of each model organism can be considered a form of scientific wealth that can be accumulated and exchanged, typically in the form of live animals or germplasm. Large-scale maintenance of live aquatic organisms that carry these genetic resources is inefficient, costly, and risky. In situ maintenance may be substantially enhanced and backed up by combining cryopreserved germplasm repositories and genetic information systems with live animal culture. Unfortunately, cryopreservation has not advanced much beyond the status of an exploratory research for most aquatic species, lacks widespread application, and methods for successful cryopreservation remain poorly defined. For most aquatic species biological materials other than sperm or somatic cells are not comprehensively banked to represent and preserve a broad range of genetic diversity for each species. Therefore, new approaches and standardization are needed for repository-level application to ensure reproducible recovery of cryopreserved materials. Additionally, development of new technologies is needed to address preservation of novel biological materials, such as eggs and embryos of aquatic species. To address these goals, the Office of Research Infrastructure Programs (ORIP) of the National Institutes of Health (NIH) hosted the Cryopreservation of Aquatic Biomedical Models Workshop on January 7 to 8, 2017, in conjunction with the 8th Aquatic Animal Models of Human Disease Conference in Birmingham, Alabama. The goals of the workshop were to assess the status of germplasm cryopreservation in various biomedical aquatic models and allow representatives of the scientific community to develop and prioritize a consensus of specific actionable recommendations that will move the field of cryopreservation of aquatic resources forward. This workshop included sessions devoted to new approaches for cryopreservation of aquatic species, discussion of current efforts and approaches in preservation of aquatic model germplasm, consideration of needs for standardization of methods to support reproducibility, and enhancement of repository development by establishment of scalable high-throughput technologies. The following three broad recommendations were forwarded from workshop attendees: 1: Establish a comprehensive, centralized unit ("hub") to programmatically develop training for and documentation of cryopreservation methods for aquatic model systems. This would include development of species-specific protocols and approaches, outreach programs, community development and standardization, freezing services and training of the next generation of experts in aquatic cryopreservation. 2: Provide mechanisms to support innovative technical advancements that will increase the reliability, reproducibility, simplicity, throughput, and efficiency of the cryopreservation process, including vitrification and pipelines for sperm, oocytes, eggs, embryos, larvae, stem cells, and somatic cells of all aquatic species. This recommendation encompasses basic cryopreservation knowledge and engineering technology, such as microfluidics and automated processing technologies. 3: Implement mechanisms that allow the various aquatic model stock centers to increase their planning, personnel, ability to secure genetic resources and to promote interaction within an integrated, comprehensive repository network for aquatic model species repositories.
Collapse
Affiliation(s)
- Mary Hagedorn
- Smithsonian Conservation Biology Institute (SCBI) and Hawaii Institute of Marine Biology (HIMB), Kaneohe, HI, USA.
| | - Zoltan Varga
- Zebrafish International Research Center, University of Oregon, Eugene, OR, USA
| | - Ronald B Walter
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA
| | - Terrence R Tiersch
- Aquatic Germplasm and Genetic Resources Center, Louisiana State University Agricultural Center (LSUAC), Baton Rouge, LA, USA
| |
Collapse
|
11
|
Effect of water content on the glass transition temperature of mixtures of sugars, polymers, and penetrating cryoprotectants in physiological buffer. PLoS One 2018; 13:e0190713. [PMID: 29304068 PMCID: PMC5755887 DOI: 10.1371/journal.pone.0190713] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/19/2017] [Indexed: 11/27/2022] Open
Abstract
Long-term storage of viable mammalian cells is important for applications ranging from in vitro fertilization to cell therapy. Cryopreservation is currently the most common approach, but storage in liquid nitrogen is relatively costly and the requirement for low temperatures during shipping is inconvenient. Desiccation is an alternative strategy with the potential to enable viable cell preservation at more convenient storage temperatures without the need for liquid nitrogen. To achieve stability during storage in the dried state it is necessary to remove enough water that the remaining matrix forms a non-crystalline glassy solid. Thus, the glass transition temperature is a key parameter for design of cell desiccation procedures. In this study, we have investigated the effects of moisture content on the glass transition temperature (Tg) of mixtures of sugars (trehalose or raffinose), polymers (polyvinylpyrrolidone or Ficoll), penetrating cryoprotectants (ethylene glycol, propylene glycol, or dimethyl sulfoxide), and phosphate buffered saline (PBS) solutes. Aqueous solutions were dried to different moisture contents by equilibration with saturated salt solutions, or by baking at 95°C. The glass transition temperatures of the dehydrated samples were then measured by differential scanning calorimetry. As expected, Tg increased with decreasing moisture content. For example, in a desiccation medium containing 0.1 M trehalose in PBS, Tg ranged from about 360 K for a completely dry sample to about 220 K at a water mass fraction of 0.4. Addition of polymers to the solutions increased Tg, while addition of penetrating cryoprotectants decreased Tg. Our results provide insight into the relationship between relative humidity, moisture content and glass transition temperature for cell desiccation solutions containing sugars, polymers and penetrating cryoprotectants.
Collapse
|
12
|
Oldenhof H, Zhang M, Narten K, Bigalk J, Sydykov B, Wolkers WF, Sieme H. Freezing-induced uptake of disaccharides for preservation of chromatin in freeze-dried stallion sperm during accelerated aging†. Biol Reprod 2017; 97:892-901. [DOI: 10.1093/biolre/iox142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/06/2017] [Indexed: 11/13/2022] Open
|
13
|
Tauroursodeoxycholic acid enhances the development of porcine embryos derived from in vitro-matured oocytes and evaporatively dried spermatozoa. Sci Rep 2017; 7:6773. [PMID: 28754923 PMCID: PMC5533721 DOI: 10.1038/s41598-017-07185-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022] Open
Abstract
Evaporative drying (ED) is an alternative technique for long-term preservation of mammalian sperm, which does not require liquid nitrogen or freeze-drying equipment, but offers advantages for storage and shipping at ambient temperature and low cost. However, the development of zygotes generated from these sperms was poor. Here, we demonstrated that the supplementation of tauroursodeoxycholic acid (TUDCA), an endogenous bile acid, during embryo culture improved the developmental competency of embryos derived from in vitro matured pig oocytes injected intracytoplasmically with boar ED spermatozoa by reducing the production of reactive oxygen species, the DNA degradation and fragmentation, and the expression of apoptosis-related gene Bax and Bak, and by increasing the transcription of anti-apoptosis gene Bcl-XL and Bcl-2. Furthermore, TUDCA treatment promoted the blastocyst quality manifested by the total cell numbers and the ratio of inner cell mass. Taken together, our data suggest that evaporative drying would be a potentially useful method for the routine preservation of boar sperm in combination with further optimization of subsequently embryo culture conditions.
Collapse
|
14
|
Recent Advances and Future Direction in Lyophilisation and Desiccation of Mesenchymal Stem Cells. Stem Cells Int 2016; 2016:3604203. [PMID: 27597869 PMCID: PMC5002305 DOI: 10.1155/2016/3604203] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/03/2016] [Indexed: 11/18/2022] Open
Abstract
Mesenchymal Stem Cells (MSCs) are a promising mammalian cell type as they can be used for the reconstruction of human tissues and organs. MSCs are shown to form bone, cartilage, fat, and muscle-like cells under specific cultivation conditions. Current technology of MSCs cryopreservation has significant disadvantages. Alternative technologies of mammalian cells preservation through lyophilisation or desiccation (air-drying) are among the upcoming domains of investigation in the field of cryobiology. Different protectants and their combinations were studied in this context. Loading of the protectant in the live cell can be a challenging issue but recent studies have shown encouraging results. This paper deals with a review of the protectants, methods of their delivery, and physical boundary conditions adopted for the desiccation and lyophilisation of mammalian cells, including MSCs. A hybrid technique combining both methods is also proposed as a promising way of MSCs dry preservation.
Collapse
|
15
|
El-Sheshtawy RI, Sisy GA, El-Nattat WS. Effects of different concentrations of sucrose or trehalose on the post-thawing quality of cattle bull semen. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2015. [DOI: 10.1016/s2305-0500(14)60053-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
16
|
Sitaula R, Jimenez J, Bhowmick S. Osmotic Damage as a Predictor of Motility Loss During Convective Desiccation of Bovine Sperm. Biopreserv Biobank 2013; 11:371-8. [DOI: 10.1089/bio.2013.0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ranjan Sitaula
- Bioengineering and Biotechnology Program, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts
| | - Jorge Jimenez
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts
| | - Sankha Bhowmick
- Bioengineering and Biotechnology Program, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts
| |
Collapse
|
17
|
Nang CF, Osman K, Budin SB, Ismail MI, Jaffar FHF, Mohamad SFS, Ibrahim SF. Bovine serum albumin: survival and osmolarity effect in bovine spermatozoa stored above freezing point. Andrologia 2011; 44 Suppl 1:447-53. [DOI: 10.1111/j.1439-0272.2011.01203.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
18
|
Klooster KL, Burruel VR, Meyers SA. Loss of fertilization potential of desiccated rhesus macaque spermatozoa following prolonged storage. Cryobiology 2011; 62:161-6. [DOI: 10.1016/j.cryobiol.2011.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 10/18/2022]
|
19
|
Sitaula R, Fowler A, Toner M, Bhowmick S. A study of the effect of sorbitol on osmotic tolerance during partial desiccation of bovine sperm. Cryobiology 2010; 60:331-6. [DOI: 10.1016/j.cryobiol.2010.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/08/2010] [Accepted: 03/10/2010] [Indexed: 10/19/2022]
|
20
|
Sitaula R, Guo M, Bhowmick S. Developing a Predictive Tool for Reactive Oxygen Species Damage During Bovine Sperm Storage at Ambient Temperature. Biopreserv Biobank 2009; 7:95-106. [DOI: 10.1089/bio.2009.0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ranjan Sitaula
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts
| | - Maolin Guo
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts
| | - Sankha Bhowmick
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts
| |
Collapse
|