1
|
Weide T, Mills K, Shofner I, Breitzman MW, Kerns K. Metabolic Shift in Porcine Spermatozoa during Sperm Capacitation-Induced Zinc Flux. Int J Mol Sci 2024; 25:7919. [PMID: 39063161 PMCID: PMC11276750 DOI: 10.3390/ijms25147919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Mammalian spermatozoa rely on glycolysis and mitochondrial oxidative phosphorylation for energy leading up to fertilization. Sperm capacitation involves a series of well-regulated biochemical steps that are necessary to give spermatozoa the ability to fertilize the oocyte. Additionally, zinc ion (Zn2+) fluxes have recently been shown to occur during mammalian sperm capacitation. Semen from seven commercial boars was collected and analyzed using image-based flow cytometry before, after, and with the inclusion of 2 mM Zn2+ containing in vitro capacitation (IVC) media. Metabolites were extracted and analyzed via Gas Chromatography-Mass Spectrometry (GC-MS), identifying 175 metabolites, with 79 differentially abundant across treatments (p < 0.05). Non-capacitated samples showed high levels of respiration-associated metabolites including glucose, fructose, citric acid, and pyruvic acid. After 4 h IVC, these metabolites significantly decreased, while phosphate, lactic acid, and glucitol increased (p < 0.05). With zinc inclusion, we observed an increase in metabolites such as lactic acid, glucitol, glucose, fructose, myo-inositol, citric acid, and succinic acid, while saturated fatty acids including palmitic, dodecanoic, and myristic acid decreased compared to 4 h IVC, indicating regulatory shifts in metabolic pathways and fatty acid composition during capacitation. These findings underscore the importance of metabolic changes in improving artificial insemination and fertility treatments in livestock and humans.
Collapse
Affiliation(s)
- Tyler Weide
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (T.W.); (I.S.)
| | - Kayla Mills
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center (BARC), Beltsville, MD 20705, USA;
| | - Ian Shofner
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (T.W.); (I.S.)
| | - Matthew W. Breitzman
- W.M. Keck Metabolomics Research Laboratory, Iowa State University, Ames, IA 50011, USA;
| | - Karl Kerns
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (T.W.); (I.S.)
| |
Collapse
|
2
|
Rockinger U, Funk M, Winter G. Current Approaches of Preservation of Cells During (freeze-) Drying. J Pharm Sci 2021; 110:2873-2893. [PMID: 33933434 DOI: 10.1016/j.xphs.2021.04.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 03/13/2021] [Accepted: 04/20/2021] [Indexed: 11/20/2022]
Abstract
The widespread application of therapeutic cells requires a successful stabilization of cells for the duration of transport and storage. Cryopreservation is currently considered the gold standard for the storage of active cells; however, (freeze-) drying cells could enable higher shelf life stability at ambient temperatures and facilitate easier transport and storage. During (freeze-) drying, freezing, (primary and secondary) drying and also the reconstitution step pose the risk of potential cell damage. To prevent these damaging processes, a wide range of protecting excipients has emerged, which can be classified, according to their chemical affiliation, into sugars, macromolecules, polyols, antioxidants and chelating agents. As many excipients cannot easily permeate the cell membrane, researchers have established various techniques to introduce especially trehalose intracellularly, prior to drying. This review aims to summarize the main damaging mechanisms during (freeze-) drying and to introduce the most common excipients with further details on their stabilizing properties and process approaches for the intracellular loading of excipients. Additionally, we would like to briefly explain recently discovered advantages of drying microorganisms, sperm, platelets, red blood cells, and eukaryotic cells, paying particular attention to the drying technique and residual moisture content.
Collapse
Affiliation(s)
- Ute Rockinger
- Ludwig-Maximilians-Universität München, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Munich, Germany.
| | - Martin Funk
- QRSKIN GmbH, Friedrich-Bergius-Ring 15, Würzburg, Germany
| | - Gerhard Winter
- Ludwig-Maximilians-Universität München, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Munich, Germany
| |
Collapse
|
3
|
Arav A, Idda A, Nieddu SM, Natan Y, Ledda S. High post-thaw survival of ram sperm after partial freeze-drying. J Assist Reprod Genet 2018; 35:1149-1155. [PMID: 29536382 PMCID: PMC6063824 DOI: 10.1007/s10815-018-1145-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/19/2018] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Recrystallization damages occur when a frozen sample is held at high subzero temperatures and when the warming process is too slow. METHODS In this work, ram semen diluted in two different concentrations of sugar solutions (Lyo A consisted of 0.4 M sorbitol and 0.25 M trehalose, and the second, Lyo B composed of 0.26 M sorbitol and 0.165 M trehalose) in egg yolk and Tris medium were compared after freezing 10 μL samples to: (1) - 10, - 25, and - 35 °C and thawing. (2) Freezing to - 10 and - 25 °C, holding for 1 h and then thawing, and (3) freezing to - 10 and - 25 °C and drying for 1 h at these temperatures at a vacuum of 80 mTorr, prior thawing. For drying, we used a new freeze-drying apparatus (Darya, FertileSafe, Israel) having a condensation temperature below - 110 °C and a vacuum pressure of 10-100 mTorr that is reached in less than 10s. RESULTS Results showed that samples in Lyo B solution frozen at - 25 °C had significantly higher sperm motility in partially freeze-dried samples than frozen samples (46.6 ± 2.8% vs 1.2 ± 2.5%, P < 0.001). Moreover, partially dried samples in Lyo B showed higher motility than Lyo A at - 25 °C (46.6 ± 2.8% vs 35 ± 4%). Cryomicroscopy and low-temperature/low-pressure environmental scanning electronic microscope demonstrated that the amount of the ice crystals present in partially dried samples was lower than in the frozen samples. CONCLUSION Holding the sperm at high subzero temperatures is necessary for the primary drying of cells during the freeze-drying process. Rapid freeze-drying can be achieved using this new device, which enables to reduce recrystallization damages.
Collapse
Affiliation(s)
- Amir Arav
- FertileSafe Ltd, 11 HaHarash st, 7403118, Nes-Ziona, Israel.
| | - Antonella Idda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | | | - Yehudit Natan
- FertileSafe Ltd, 11 HaHarash st, 7403118, Nes-Ziona, Israel
| | - Sergio Ledda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| |
Collapse
|
4
|
Lins TLBG, Menezes VG, Barberino RS, Costa SAP, Santos NMSS, Nascimento TVC, Queiroz MAA, Cordeiro MF, Ribeiro LB, Araujo GGL, Matos MHT. Sperm quality, and morphology and apoptosis of germinal epithelium cells of ram lambs receiving water of different salinities. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an16801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of the present study was to evaluate the influence of water salinity on semen quality, and on the morphology and apoptosis of germinal epithelial cells in prepubertal Morada Nova male lambs. Thirty-two lambs were allocated into four treatments with different amounts of sodium chloride (NaCl) added to the drinking water to simulate different water salinities; consequently, the concentrations of total dissolved solids (TDS) were as follows: 640 (control), 3188; 5740 and 8326 mg/L TDS. After 78 days, sperm was collected for analysis. The animals were slaughtered and histological and morphometric analyses and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) assay were performed on the testis tissue. The thickness of the germinal epithelium and diameter of the seminiferous tubules were measured. A quadratic effect (P < 0.05) was observed in regard to semen volume and sperm abnormalities. There was an increase in the sperm count in the treatment containing 3188 mg/L TDS, compared with the control (640 mg/L TDS); however, this treatment did not differ (P > 0.05) from the other salinity treatments. Moreover, treatments with 3188 mg/L or 5740 mg/L TDS showed a higher (P < 0.05) spermatic vigour than did the other treatments. There was an increase (P < 0.05) in the number of TUNEL-positive cells in the treatment with the highest salinity (8326 mg/L TDS) compared with the control and other treatments. In conclusion, water used for drinking should contain between 3188 and 5740 mg/mL TDS so as to improve the concentration, vigour, motility and volume of semen, and to decrease sperm abnormalities in germinal cells of seminiferous tubule of Morada Nova ram lambs.
Collapse
|
5
|
Wu GQ, Lv CR, Jiang YT, Wang SY, Shao QY, Hong QH, Quan GB. The Replacement of Monosaccharide by Mannitol or Sorbitol in the Freezing Extender Enhances Cryosurvival of Ram Spermatozoa. Biopreserv Biobank 2016; 14:357-366. [DOI: 10.1089/bio.2015.0080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Guo Quan Wu
- Yunnan Animal Science and Veterinary Institute, Kunming City, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, China
- Yunnan Provincial Meat Caprine Engineering Research Center, Kunming City, China
| | - Chun Rong Lv
- Yunnan Animal Science and Veterinary Institute, Kunming City, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, China
- Yunnan Provincial Meat Caprine Engineering Research Center, Kunming City, China
| | - Yan Ting Jiang
- Yunnan Animal Science and Veterinary Institute, Kunming City, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, China
- Yunnan Provincial Meat Caprine Engineering Research Center, Kunming City, China
| | - Si Yu Wang
- Yunnan Animal Science and Veterinary Institute, Kunming City, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, China
- Yunnan Provincial Meat Caprine Engineering Research Center, Kunming City, China
| | - Qing Yong Shao
- Yunnan Animal Science and Veterinary Institute, Kunming City, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, China
- Yunnan Provincial Meat Caprine Engineering Research Center, Kunming City, China
| | - Qiong Hua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming City, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, China
- Yunnan Provincial Meat Caprine Engineering Research Center, Kunming City, China
| | - Guo Bo Quan
- Yunnan Animal Science and Veterinary Institute, Kunming City, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, China
- Yunnan Provincial Meat Caprine Engineering Research Center, Kunming City, China
| |
Collapse
|
6
|
Recent Advances and Future Direction in Lyophilisation and Desiccation of Mesenchymal Stem Cells. Stem Cells Int 2016; 2016:3604203. [PMID: 27597869 PMCID: PMC5002305 DOI: 10.1155/2016/3604203] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/03/2016] [Indexed: 11/18/2022] Open
Abstract
Mesenchymal Stem Cells (MSCs) are a promising mammalian cell type as they can be used for the reconstruction of human tissues and organs. MSCs are shown to form bone, cartilage, fat, and muscle-like cells under specific cultivation conditions. Current technology of MSCs cryopreservation has significant disadvantages. Alternative technologies of mammalian cells preservation through lyophilisation or desiccation (air-drying) are among the upcoming domains of investigation in the field of cryobiology. Different protectants and their combinations were studied in this context. Loading of the protectant in the live cell can be a challenging issue but recent studies have shown encouraging results. This paper deals with a review of the protectants, methods of their delivery, and physical boundary conditions adopted for the desiccation and lyophilisation of mammalian cells, including MSCs. A hybrid technique combining both methods is also proposed as a promising way of MSCs dry preservation.
Collapse
|
7
|
Sitaula R, Jimenez J, Bhowmick S. Osmotic Damage as a Predictor of Motility Loss During Convective Desiccation of Bovine Sperm. Biopreserv Biobank 2013; 11:371-8. [DOI: 10.1089/bio.2013.0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ranjan Sitaula
- Bioengineering and Biotechnology Program, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts
| | - Jorge Jimenez
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts
| | - Sankha Bhowmick
- Bioengineering and Biotechnology Program, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts
| |
Collapse
|