1
|
Kim H, Oh S, Song S. Lactobacillus Persisters Formation and Resuscitation. J Microbiol Biotechnol 2024; 34:854-862. [PMID: 38326923 DOI: 10.4014/jmb.2312.12035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
Lactobacillus is a commonly used probiotic, and many researchers have focused on its stress response to improve its functionality and survival. However, studies on persister cells, dormant cells that aid bacteria in surviving general stress, have focused on pathogenic bacteria that cause infection, not Lactobacillus. Thus, understanding Lactobacillus persister cells will provide essential clues for understanding how Lactobacillus survives and maintains its function under various environmental conditions. We treated Lactobacillus strains with various antibiotics to determine the conditions required for persister formation using kill curves and transmission electron microscopy. In addition, we observed the resuscitation patterns of persister cells using single-cell analysis. Our results show that Lactobacillus creates a small population of persister cells (0.0001-1% of the bacterial population) in response to beta-lactam antibiotics such as ampicillin and amoxicillin. Moreover, only around 0.5-1% of persister cells are heterogeneously resuscitated by adding fresh media; the characteristics are typical of persister cells. This study provides a method for forming and verifying the persistence of Lactobacillus and demonstrates that antibiotic-induced Lactobacillus persister cells show characteristics of dormancy, sensitivity of antibiotics, same as exponential cells, multi-drug tolerance, and resuscitation, which are characteristics of general persister cells. This study suggests that the mechanisms of formation and resuscitation may vary depending on the characteristics, such as the membrane structure of the bacterial species.
Collapse
Affiliation(s)
- Hyein Kim
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sejong Oh
- Division of Animal Science, Chonnam National University, Gwang-Ju 61186, Republic of Korea
| | - Sooyeon Song
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
2
|
Wang L, Huang G, Ma W, Jin G. Preparation and Application of Directed Vat Set Indigenous Freeze-Drying Lentilactobacillus hilgardii Q19 Starter in Winemaking. Foods 2023; 12:foods12051053. [PMID: 36900570 PMCID: PMC10000753 DOI: 10.3390/foods12051053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
In order to prepare a better direct vat set for malolactic fermentation (MLF) in high ethanol and low pH wines, the high-ethanol- and low-temperature-tolerant strain Lentilactobacillus hilgardii Q19, which was isolated from the eastern foothill of the Helan Mountain wine region in China, was used to prepare a direct vat set by vacuum freeze-drying. A superior freeze-dried lyoprotectant was obtained to create the starting culture by selecting, combining, and optimizing numerous lyoprotectants with higher protection for Q19 by using a single-factor experiment and response surface approach. Finally, the Lentilactobacillus hilgardii Q19 direct vat set was inoculated in Cabernet Sauvignon wine to carry out MLF on a pilot scale, with commercial starter culture Oeno1 as control. The volatile compounds, biogenic amines, and ethyl carbamate content were analyzed. The results showed that a combination of 8.5 g/100 mL skimmed milk powder, 14.5 g/100 mL yeast extract powder, and 6.0 g/100 mL sodium hydrogen glutamate offered better protection; with this lyoprotectant, there were (4.36 ± 0.34) × 1011 CFU/g cells after freeze-drying, and it showed an excellent ability to degrade L-malic acid and could successfully finish MLF. In addition, in terms of aroma and wine safety, compared with Oeno1, the quantity and complexity of volatile compounds were increased after MLF, and biogenic amines and ethyl carbamate were produced less during MLF. We conclude that the Lentilactobacillus hilgardii Q19 direct vat set could be applied as a new MLF starter culture in high-ethanol wines.
Collapse
Affiliation(s)
- Ling Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Gang Huang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Wen Ma
- School of Food and Wine, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Ministry of Grape and Wine, Yinchuan 750021, China
| | - Gang Jin
- School of Food and Wine, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Ministry of Grape and Wine, Yinchuan 750021, China
- Correspondence:
| |
Collapse
|
3
|
Integrative Multiomics Analysis of the Heat Stress Response of Enterococcus faecium. Biomolecules 2023; 13:biom13030437. [PMID: 36979372 PMCID: PMC10046512 DOI: 10.3390/biom13030437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
A continuous heat-adaptation test was conducted for one Enterococcus faecium (E. faecium) strain wild-type (WT) RS047 to obtain a high-temperature-resistant strain. After domestication, the strain was screened with a significantly higher ability of heat resistance. which is named RS047-wl. Then a multi-omics analysis of transcriptomics and metabolomics was used to analyze the mechanism of the heat resistance of the mutant. A total of 98 differentially expressed genes (DEGs) and 115 differential metabolites covering multiple metabolic processes were detected in the mutant, which indicated that the tolerance of heat resistance was regulated by multiple mechanisms. The changes in AgrB, AgrC, and AgrA gene expressions were involved in quorum-sensing (QS) system pathways, which regulate biofilm formation. Second, highly soluble osmotic substances such as putrescine, spermidine, glycine betaine (GB), and trehalose-6P were accumulated for the membrane transport system. Third, organic acids metabolism and purine metabolism were down-regulated. The findings can provide target genes for subsequent genetic modification of E. faecium, and provide indications for screening heat-resistant bacteria, so as to improve the heat-resistant ability of E. faecium for production.
Collapse
|
4
|
Biological control of soft rot in potato by κ-carrageenan carriers encapsulated microbial predators. Appl Microbiol Biotechnol 2022; 107:81-96. [DOI: 10.1007/s00253-022-12294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/27/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022]
|
5
|
Babakina M, Pershakova T, Samoylenko M, Semiryazhko E. Research of the survival of a consortium of Zygosaccharomyces kombuchaensis yeast and Gluconoacetobacter xylinus bacteria during frozen storage using various protective media. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224601008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the present study the survival of the consortium of yeast and bacteria using protective media was investigated. The protective medium consisting of 1 % gelatin, 5 % monosodium glutamate and 5 % sucrose provides the best preservation of living cells of the consortium and allows stabilization of cells for up to 100 days at storage temperatures from -2 °C to -10 °C. The projective medium consisting of 1 % gelatin and 10 % sucrose provides effective storage of the cells at t=-2 °C for 100 days; t=-5 °C – 80 days; t=-10 °C – 60 days. The projective medium of skimmed milk and 7.5 % glucose ensures effective storage of the cells of the consortium at t=-2 °C for 100 days; t=-5 °C – 80 days; t=-10 °C – 80 days. The information obtained is interesting for following researches of the development of technologies for the bioconversion of plant materials.
Collapse
|
6
|
Nuylert A, Jampaphaeng K, Tani A, Maneerat S. Survival and stability of
Lactobacillus plantarum
KJ03
as a freeze‐dried autochthonous starter culture for application in stink bean fermentation (
Sataw‐Dong
). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Aem Nuylert
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro‐Industry Prince of Songkla University Hat Yai Thailand
| | - Krittanon Jampaphaeng
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro‐Industry Prince of Songkla University Hat Yai Thailand
| | - Akio Tani
- Institute of Plant Science and Resources Okayama University Kurashiki Japan
| | - Suppasil Maneerat
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro‐Industry Prince of Songkla University Hat Yai Thailand
| |
Collapse
|
7
|
Rakchai N, Maneerat S. Improved Survival of Freeze-Dried Lactobacillus pentosus SY130 and Applied as a Co-culture Starter with Lactobacillus plantarum KJ03 for Fermenting Stink Bean (Sataw-Dong). Indian J Microbiol 2022; 62:215-224. [DOI: 10.1007/s12088-021-00997-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022] Open
|
8
|
Flow cytometric analysis reveals culture condition dependent variations in phenotypic heterogeneity of Limosilactobacillus reuteri. Sci Rep 2021; 11:23567. [PMID: 34876641 PMCID: PMC8651721 DOI: 10.1038/s41598-021-02919-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/24/2021] [Indexed: 11/08/2022] Open
Abstract
Optimisation of cultivation conditions in the industrial production of probiotics is crucial to reach a high-quality product with retained probiotic functionality. Flow cytometry-based descriptors of bacterial morphology may be used as markers to estimate physiological fitness during cultivation, and can be applied for online monitoring to avoid suboptimal growth. In the current study, the effects of temperature, initial pH and oxygen levels on cell growth and cell size distributions of Limosilactobacillus reuteri DSM 17938 were measured using multivariate flow cytometry. A pleomorphic behaviour was evident from the measurements of light scatter and pulse width distributions. A pattern of high growth yielding smaller cells and less heterogeneous populations could be observed. Analysis of pulse width distributions revealed significant morphological heterogeneities within the bacterial cell population under non-optimal growth conditions, and pointed towards low temperature, high initial pH, and high oxygen levels all being triggers for changes in morphology towards cell chain formation. However, cell size did not correlate to survivability after freeze-thaw or freeze-drying stress, indicating that it is not a key determinant for physical stress tolerance. The fact that L. reuteri morphology varies depending on cultivation conditions suggests that it can be used as marker for estimating physiological fitness and responses to its environment.
Collapse
|
9
|
Melchior S, Marino M, Innocente N, Calligaris S, Nicoli MC. Effect of different biopolymer-based structured systems on the survival of probiotic strains during storage and in vitro digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3902-3909. [PMID: 32323334 DOI: 10.1002/jsfa.10432] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/02/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND This study aimed to evaluate the protective effect of different biopolymer systems on the viability of two probiotics (Lactobacillus rhamnosus and Streptococcus thermophilus) during storage and in vitro digestion. Methylcellulose (MC), sodium alginate (SA), and whey protein (WP)-based structures were designed and characterized in terms of pH, rheological properties, and visual appearance. RESULTS The results highlighted that the WP-system ensured probiotic protection during both storage and in vitro digestion. This result was attributed to a combined effect of the physical barrier offered by the protein gel network and whey proteins as a nutrient for microbes. On the other hand, surprisingly, the viscous methylcellulose-based system was able to guarantee good microbial viability during storage. However, this was not confirmed during in vitro digestion. The opposite results were obtained for sodium alginate beads. CONCLUSION The results suggest that the capacity of a polymeric structure to protect probiotic bacteria is a combination of structural organization and system formulation. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sofia Melchior
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Udine, Italy
| | - Marilena Marino
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Udine, Italy
| | - Nadia Innocente
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Udine, Italy
| | - Sonia Calligaris
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Udine, Italy
| | - Maria Cristina Nicoli
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Udine, Italy
| |
Collapse
|
10
|
Gaucher F, Rabah H, Kponouglo K, Bonnassie S, Pottier S, Dolivet A, Marchand P, Jeantet R, Blanc P, Jan G. Intracellular osmoprotectant concentrations determine Propionibacterium freudenreichii survival during drying. Appl Microbiol Biotechnol 2020; 104:3145-3156. [PMID: 32076782 PMCID: PMC7062905 DOI: 10.1007/s00253-020-10425-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/22/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
Propionibacterium freudenreichii is a beneficial bacterium widely used in food as a probiotic and as a cheese-ripening starter. In these different applications, it is produced, dried, and stored before being used. Both freeze-drying and spray-drying were considered for this purpose. Freeze-drying is a discontinuous process that is energy-consuming but that allows high cell survival. Spray-drying is a continuous process that is more energy-efficient but that can lead to massive bacterial death related to heat, osmotic, and oxidative stresses. We have shown that P. freudenreichii cultivated in hyperconcentrated rich media can be spray-dried with limited bacterial death. However, the general stress tolerance conferred by this hyperosmotic constraint remained a black box. In this study, we modulated P. freudenreichii growth conditions and monitored both osmoprotectant accumulation and stress tolerance acquisition. Changing the ratio between the carbohydrates provided and non-protein nitrogen during growth under osmotic constraint modulated osmoprotectant accumulation. This, in turn, was correlated with P. freudenreichii tolerance towards different stresses, on the one hand, and towards freeze-drying and spray-drying, on the other. Surprisingly, trehalose accumulation correlated with spray-drying survival and glycine betaine accumulation with freeze-drying. This first report showing the ability to modulate the trehalose/GB ratio in osmoprotectants accumulated by a probiotic bacterium opens new perspectives for the optimization of probiotics production.
Collapse
Affiliation(s)
- Floriane Gaucher
- UMR STLO, INRAE, Agrocampus Ouest, 35042, Rennes, France.,Bioprox, 6 rue Barbès, 92532, Levallois-Perret, France
| | - Houem Rabah
- UMR STLO, INRAE, Agrocampus Ouest, 35042, Rennes, France.,Pôle Agronomique Ouest, Régions Bretagne et Pays de la Loire, 35042, Rennes, France
| | | | - Sylvie Bonnassie
- UMR STLO, INRAE, Agrocampus Ouest, 35042, Rennes, France.,Université de Rennes I, Rennes, France
| | - Sandrine Pottier
- CNRS, ISCR - UMR 6226, University Rennes, PRISM, BIOSIT - UMS 3480, 35000, Rennes, France
| | - Anne Dolivet
- UMR STLO, INRAE, Agrocampus Ouest, 35042, Rennes, France
| | | | - Romain Jeantet
- UMR STLO, INRAE, Agrocampus Ouest, 35042, Rennes, France
| | | | - Gwénaël Jan
- UMR STLO, INRAE, Agrocampus Ouest, 35042, Rennes, France.
| |
Collapse
|
11
|
Gaucher F, Bonnassie S, Rabah H, Marchand P, Blanc P, Jeantet R, Jan G. Review: Adaptation of Beneficial Propionibacteria, Lactobacilli, and Bifidobacteria Improves Tolerance Toward Technological and Digestive Stresses. Front Microbiol 2019; 10:841. [PMID: 31068918 PMCID: PMC6491719 DOI: 10.3389/fmicb.2019.00841] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 04/02/2019] [Indexed: 01/15/2023] Open
Abstract
This review deals with beneficial bacteria, with a focus on lactobacilli, propionibacteria, and bifidobacteria. As being recognized as beneficial bacteria, they are consumed as probiotics in various food products. Some may also be used as starters in food fermentation. In either case, these bacteria may be exposed to various environmental stresses during industrial production steps, including drying and storage, and during the digestion process. In accordance with their adaptation to harsh environmental conditions, they possess adaptation mechanisms, which can be induced by pretreatments. Adaptive mechanisms include accumulation of compatible solutes and of energy storage compounds, which can be largely modulated by the culture conditions. They also include the regulation of energy production pathways, as well as the modulation of the cell envelop, i.e., membrane, cell wall, surface layers, and exopolysaccharides. They finally lead to the overexpression of molecular chaperones and of stress-responsive proteases. Triggering these adaptive mechanisms can improve the resistance of beneficial bacteria toward technological and digestive stresses. This opens new perspectives for the improvement of industrial processes efficiency with regard to the survival of beneficial bacteria. However, this bibliographical survey evidenced that adaptive responses are strain-dependent, so that growth and adaptation should be optimized case-by-case.
Collapse
Affiliation(s)
- Floriane Gaucher
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
- Bioprox, Levallois-Perret, France
| | - Sylvie Bonnassie
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
- Science de la Vie et de la Terre, Université de Rennes 1, Rennes, France
| | - Houem Rabah
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
- Pôle Agronomique Ouest, Bba, Rennes, France
| | | | | | - Romain Jeantet
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
| | - Gwénaël Jan
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
| |
Collapse
|
12
|
Glycine betaine transport conditions of Lactobacillus delbrueckii subsp. bulgaricus in salt induced hyperosmotic stress. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Schott AS, Behr J, Geißler AJ, Kuster B, Hahne H, Vogel RF. Quantitative Proteomics for the Comprehensive Analysis of Stress Responses of Lactobacillus paracasei subsp. paracasei F19. J Proteome Res 2017; 16:3816-3829. [PMID: 28862000 DOI: 10.1021/acs.jproteome.7b00474] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lactic acid bacteria are broadly employed as starter cultures in the manufacture of foods. Upon technological preparation, they are confronted with drying stress that amalgamates numerous stress conditions resulting in losses of fitness and survival. To better understand and differentiate physiological stress responses, discover general and specific markers for the investigated stress conditions, and predict optimal preconditioning for starter cultures, we performed a comprehensive genomic and quantitative proteomic analysis of a commonly used model system, Lactobacillus paracasei subsp. paracasei TMW 1.1434 (isogenic with F19) under 11 typical stress conditions, including among others oxidative, osmotic, pH, and pressure stress. We identified and quantified >1900 proteins in triplicate analyses, representing 65% of all genes encoded in the genome. The identified genes were thoroughly annotated in terms of subcellular localization prediction and biological functions, suggesting unbiased and comprehensive proteome coverage. In total, 427 proteins were significantly differentially expressed in at least one condition. Most notably, our analysis suggests that optimal preconditioning toward drying was predicted to be alkaline and high-pressure stress preconditioning. Taken together, we believe the presented strategy may serve as a prototypic example for the analysis and utility of employing quantitative-mass-spectrometry-based proteomics to study bacterial physiology.
Collapse
Affiliation(s)
- Ann-Sophie Schott
- Chair of Technical Microbiology, Technische Universität München , Freising 85354, Germany
| | - Jürgen Behr
- Chair of Technical Microbiology, Technische Universität München , Freising 85354, Germany.,Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Freising 85354, Germany
| | - Andreas J Geißler
- Chair of Technical Microbiology, Technische Universität München , Freising 85354, Germany
| | - Bernhard Kuster
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Freising 85354, Germany.,Chair of Proteomics and Bioanalytics, Technische Universität München , Freising 85354, Germany.,Center for Integrated Protein Science Munich, Freising 85354, Germany
| | | | - Rudi F Vogel
- Chair of Technical Microbiology, Technische Universität München , Freising 85354, Germany
| |
Collapse
|
14
|
Schott AS, Behr J, Quinn J, Vogel RF. MALDI-TOF Mass Spectrometry Enables a Comprehensive and Fast Analysis of Dynamics and Qualities of Stress Responses of Lactobacillus paracasei subsp. paracasei F19. PLoS One 2016; 11:e0165504. [PMID: 27783652 PMCID: PMC5082675 DOI: 10.1371/journal.pone.0165504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/03/2016] [Indexed: 11/21/2022] Open
Abstract
Lactic acid bacteria (LAB) are widely used as starter cultures in the manufacture of foods. Upon preparation, these cultures undergo various stresses resulting in losses of survival and fitness. In order to find conditions for the subsequent identification of proteomic biomarkers and their exploitation for preconditioning of strains, we subjected Lactobacillus (Lb.) paracasei subsp. paracasei TMW 1.1434 (F19) to different stress qualities (osmotic stress, oxidative stress, temperature stress, pH stress and starvation stress). We analysed the dynamics of its stress responses based on the expression of stress proteins using MALDI-TOF mass spectrometry (MS), which has so far been used for species identification. Exploiting the methodology of accumulating protein expression profiles by MALDI-TOF MS followed by the statistical evaluation with cluster analysis and discriminant analysis of principle components (DAPC), it was possible to monitor the expression of low molecular weight stress proteins, identify a specific time point when the expression of stress proteins reached its maximum, and statistically differentiate types of adaptive responses into groups. Above the specific result for F19 and its stress response, these results demonstrate the discriminatory power of MALDI-TOF MS to characterize even dynamics of stress responses of bacteria and enable a knowledge-based focus on the laborious identification of biomarkers and stress proteins. To our knowledge, the implementation of MALDI-TOF MS protein profiling for the fast and comprehensive analysis of various stress responses is new to the field of bacterial stress responses. Consequently, we generally propose MALDI-TOF MS as an easy and quick method to characterize responses of microbes to different environmental conditions, to focus efforts of more elaborate approaches on time points and dynamics of stress responses.
Collapse
Affiliation(s)
- Ann-Sophie Schott
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Jürgen Behr
- Bavarian Center for Biomolecular Mass Spectrometry, Technische Universität München, Freising, Germany
| | - Jennifer Quinn
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Rudi F. Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| |
Collapse
|
15
|
Esmaeilzadeh J, Nazemiyeh H, Maghsoodi M, Lotfipour F. Evaluation of the Effect of Psyllium on the Viability of Lactobacillus Acidophilus in Alginate-Polyl Lysine Beads. Adv Pharm Bull 2016; 6:337-343. [PMID: 27766217 DOI: 10.15171/apb.2016.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/15/2016] [Accepted: 06/30/2016] [Indexed: 11/09/2022] Open
Abstract
Purpose: Psylliumseeds are used in traditional herbal medicine to treat various disorders. Moreover, as a soluble fiber, psyllium has potential to stimulate bacterial growth in digestive system. We aimed to substitute alkali-extractable polysaccharides of psyllium for alginate in beads with second coat of poly-l-lysine to coat Lactobacillus acidophilus. Methods: Beads were prepared using extrusion technique. Poly-l-lysine as second coat was incorporated on optimum alginate/psyllium beads using immersion technique. Beads were characterized in terms of size, encapsulation efficiency, integrity and bacterial survival in harsh conditions. Results: Beads with narrow size distribution ranging from 1.85 ± 0.05 to 2.40 ± 0.18 mm with encapsulation efficiency higher than 96% were achieved. Psyllium concentrations in beads did not produce constant trend in bead sizes. Surface topography by SEM showed that substitution of psyllium enhanced integrity of obtained beads. Psyllium successfully protected the bacteria against acidic condition and lyophilization equal to alginate in the beads. Better survivability with beads of alginate/psyllium-poly-l-lysine was achieved with around 2 log rise in bacterial count in acid condition compared to the corresponding single coat beads. Conclusion: Alginate/psyllium (1:2) beads with narrow size distribution and high encapsulation efficiency of the bacteria have been achieved. Presence of psyllium produced a much smoother and integrated surface texture for the beads with sufficient protection of the bacteria against acidic condition as much as alginate. Considering the health benefits of psyllium and its prebiotic activity, psyllium can be beneficially replaced in part for alginate in probiotic coating.
Collapse
Affiliation(s)
- Jaleh Esmaeilzadeh
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Nazemiyeh
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Maghsoodi
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Lotfipour
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.; Gastrointestinal and Liver Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Jofré A, Aymerich T, Garriga M. Impact of different cryoprotectants on the survival of freeze-dried Lactobacillus rhamnosus and Lactobacillus casei/paracasei during long-term storage. Benef Microbes 2016; 6:381-6. [PMID: 25380798 DOI: 10.3920/bm2014.0038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The production of long shelf-life highly concentrated dried probiotic/starter cultures is of paramount importance for the food industry. The aim of the present study was to evaluate the protective effect of glucose, lactose, trehalose, and skim milk applied alone or combined upon the survival of potentially probiotic Lactobacillus rhamnosus CTC1679, Lactobacillus casei/paracasei CTC1677 and L. casei/paracasei CTC1678 during freeze-drying and after 39 weeks of storage at 4 and 22 °C. Immediately after freeze-drying, the percentage of survivors was very high (≥ 94%) and only slight differences were observed among strains and cryoprotectants. In contrast, during storage, survival in the dried state depended on the cryoprotectant, temperature and strain. For all the protectants assayed, the stability of the cultures was remarkably higher when stored under refrigeration (4 °C). Under these conditions, skim milk alone or supplemented with trehalose or lactose showed the best performance (reductions ≤ 0.9 log units after 39 weeks of storage). The lowest survival was observed during non-refrigerated storage and with glucose and glucose plus milk; no viable cells left at the end of the storage period. Thus, freeze-drying in the presence of appropriate cryoprotectants allows the production of long shelf-life highly concentrated dried cultures ready for incorporation in high numbers into food products as starter/potential probiotic cultures.
Collapse
Affiliation(s)
- A Jofré
- IRTA-Food Safety Programme, Finca Camps i Armet, 17121 Monells, Spain
| | - T Aymerich
- IRTA-Food Safety Programme, Finca Camps i Armet, 17121 Monells, Spain
| | - M Garriga
- IRTA-Food Safety Programme, Finca Camps i Armet, 17121 Monells, Spain
| |
Collapse
|
17
|
|
18
|
Louesdon S, Charlot-Rougé S, Juillard V, Tourdot-Maréchal R, Béal C. Osmotic stress affects the stability of freeze-dried Lactobacillus buchneri R1102 as a result of intracellular betaine accumulation and membrane characteristics. J Appl Microbiol 2014; 117:196-207. [PMID: 24661271 DOI: 10.1111/jam.12501] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 03/06/2014] [Accepted: 03/14/2014] [Indexed: 11/27/2022]
Abstract
AIMS To help cells to better resist the stressful conditions associated with the freeze-drying process during starter production, we investigated the effect of various osmotic conditions on growth, survival and acidification activity of Lactobacillus buchneri R1102, after freeze-drying and during storage for 3 months at 25°C. METHODS AND RESULTS High survival rates during freeze-drying, but not during storage, were obtained when 0·1 mol l(-1) KCl was added at the beginning of fermentation, without any change in membrane properties and betaine accumulation. This condition made it possible to maintain a high acidification rate throughout the process. In contrast, the addition of 0·6 mol l(-1) KCl concentrations at the beginning of fermentation led to a high survival rate during storage that was related to high intracellular betaine levels, low membrane fluidity and high cycC19:0 concentrations. However, these modifications induced the degradation of acidification activity during storage. When a moderate stress was applied by combining 0·1 mol l(-1) KCl at the beginning and 0·6 mol l(-1) KCl at the end of fermentation, betaine accumulated in the cells without any membrane alteration, allowing them to maintain high acidification activity and survival rate during storage. CONCLUSION Specific osmotic conditions during fermentation induced intracellular betaine accumulation and modifications of membrane character-istics, thus affecting stress resistance of Lact. buchneri R1102. A slight osmotic stress made it possible to maintain a high acidification activity, whereas a high osmotic stress at the end of fermentation led to the preservation of cell survival during freeze-dried storage. SIGNIFICANCE AND IMPACT OF THE STUDY This study revealed that the survival and preservation of acidification activity of freeze-dried Lact. buchneri R1102 during starter production can be improved by using appropriate osmotic conditions.
Collapse
Affiliation(s)
- S Louesdon
- UMR 782 Génie et Microbiology des Procédés Alimentaires, AgroParisTech - INRA, Thiverval-Grignon, France; Laboratoire Procédés Bactéries, Lallemand SAS, Blagnac Cedex, France
| | | | | | | | | |
Collapse
|
19
|
Montel Mendoza G, Pasteris SE, Otero MC, Fatima Nader-Macías ME. Survival and beneficial properties of lactic acid bacteria from raniculture subjected to freeze-drying and storage. J Appl Microbiol 2013; 116:157-66. [PMID: 24118924 DOI: 10.1111/jam.12359] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/17/2013] [Accepted: 09/30/2013] [Indexed: 11/30/2022]
Abstract
AIM To evaluate the effect of freeze-drying and storage conditions on the viability and beneficial properties of lactic acid bacteria (LAB) for raniculture. METHODS AND RESULTS Lactococcus lactis CRL 1584, L. lactis CRL 1827, Lactococcus garvieae CRL 1828 and Lactobacillus plantarum CRL 1606 viability under different conditions was studied. 10% lactose and 5% skim milk + 5% lactose were excellent lyoprotectants, but 5% skim milk + 5% lactose and whey protein concentrated (WPC) or WPC + sugars were the lower cost lyoprotective options. The effect of temperature depended on both lyoprotectants and storage time. Thus, for Lactococcus, skim milk, skim milk + sucrose and WPC + sucrose were selected for lyophilization and storage at 4°C and skim milk + lactose for 25°C. For Lact. plantarum CRL 1606, the best lyoprotectants for lyophilization and storage at 4°C were milk + sugars and WPS + sucrose and, at 25°C, skim milk + sucrose. CONCLUSIONS Lactic acid bacteria viability after freeze-drying was strain-specific and depended on the lyoprotectant used. Highest viability was obtained when stored at 4°C, and the beneficial properties remained stable for 18 months independently of storage temperature. SIGNIFICANCE AND IMPACT OF THE STUDY The studies reported for the first time in this work are of primary interest to obtain dried bacteria to be included in beneficial products for raniculture.
Collapse
Affiliation(s)
- G Montel Mendoza
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Instituto Superior de Investigaciones Biológicas (INSIBIO-CONICET), Instituto de Biología "Dr. Francisco D. Barbieri", San Miguel de Tucumán, Argentina
| | | | | | | |
Collapse
|
20
|
Önneby K, Pizzul L, Bjerketorp J, Mahlin D, Håkansson S, Wessman P. Effects of di- and polysaccharide formulations and storage conditions on survival of freeze-dried Sphingobium sp. World J Microbiol Biotechnol 2013; 29:1399-408. [DOI: 10.1007/s11274-013-1303-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 02/21/2013] [Indexed: 10/27/2022]
|