1
|
Bandyopadhyay A, Ghibhela B, Shome S, Hoque S, Nandi SK, Mandal BB. Photo-Polymerizable Autologous Growth-Factor Loaded Silk-Based Biomaterial-Inks toward 3D Printing-Based Regeneration of Meniscus Tears. Adv Biol (Weinh) 2024; 8:e2300710. [PMID: 38402426 DOI: 10.1002/adbi.202300710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/13/2024] [Indexed: 02/26/2024]
Abstract
Meniscus tears in the avascular region undergoing partial or full meniscectomy lead to knee osteoarthritis and concurrent lifestyle hindrances in the young and aged alike. Here they reported ingenious photo-polymerizable autologous growth factor loaded 3D printed scaffolds to potentially treat meniscal defects . A shear-thinning photo-crosslinkable silk fibroin methacrylate-gelatin methacrylate-polyethylene glycol dimethacrylate biomaterial-ink is formulated and loaded with freeze-dried growth factor rich plasma (GFRP) . The biomaterial-ink exhibits optimal rheological properties and shape fidelity for 3D printing. Initial evaluation revealed that the 3D printed scaffolds mimic mechanical characteristics of meniscus, possess favourable porosity and swelling characteristics, and demonstrate sustained GFRP release. GFRP laden 3D scaffolds are screened with human neo-natal stem cells in vitro and biomaterial-ink comprising of 25 mg mL-1 of GFRP (GFRP25) is found to be amicable for meniscus tissue engineering. GFRP25 ink demonstrated rigorous rheological compliance, and printed constructs demonstrated long term degradability (>6 weeks), GFRP release (>5 weeks), and mechanical durability (3 weeks). GFRP25 scaffolds aided in proliferation of seeded human neo-natal stem cellsand their meniscus-specific fibrochondrogenic differentiation . GFRP25 constructs show amenable inflammatory response in vitro and in vivo. GFRP25 biomaterial-ink and printed GFRP25 scaffolds could be potential patient-specific treatment modalities for meniscal defects.
Collapse
Affiliation(s)
- Ashutosh Bandyopadhyay
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Baishali Ghibhela
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sayanti Shome
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Samsamul Hoque
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, 700037, India
| | - Samit K Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, 700037, India
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
2
|
Gardikiotis I, Cojocaru FD, Mihai CT, Balan V, Dodi G. Borrowing the Features of Biopolymers for Emerging Wound Healing Dressings: A Review. Int J Mol Sci 2022; 23:ijms23158778. [PMID: 35955912 PMCID: PMC9369430 DOI: 10.3390/ijms23158778] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Wound dressing design is a dynamic and rapidly growing field of the medical wound-care market worldwide. Advances in technology have resulted in the development of a wide range of wound dressings that treat different types of wounds by targeting the four phases of healing. The ideal wound dressing should perform rapid healing; preserve the body’s water content; be oxygen permeable, non-adherent on the wound and hypoallergenic; and provide a barrier against external contaminants—at a reasonable cost and with minimal inconvenience to the patient. Therefore, choosing the best dressing should be based on what the wound needs and what the dressing does to achieve complete regeneration and restoration of the skin’s structure and function. Biopolymers, such as alginate (ALG), chitosan (Cs), collagen (Col), hyaluronic acid (HA) and silk fibroin (SF), are extensively used in wound management due to their biocompatibility, biodegradability and similarity to macromolecules recognized by the human body. However, most of the formulations based on biopolymers still show various issues; thus, strategies to combine them with molecular biology approaches represent the future of wound healing. Therefore, this article provides an overview of biopolymers’ roles in wound physiology as a perspective on the development of a new generation of enhanced, naturally inspired, smart wound dressings based on blood products, stem cells and growth factors.
Collapse
Affiliation(s)
- Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| | - Florina-Daniela Cojocaru
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
- Correspondence: (F.-D.C.); (G.D.)
| | - Cosmin-Teodor Mihai
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| | - Vera Balan
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| | - Gianina Dodi
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
- Correspondence: (F.-D.C.); (G.D.)
| |
Collapse
|
3
|
Ngah NA, Dias GJ, Tong DC, Mohd Noor SNF, Ratnayake J, Cooper PR, Hussaini HM. Lyophilised Platelet-Rich Fibrin: Physical and Biological Characterisation. Molecules 2021; 26:molecules26237131. [PMID: 34885714 PMCID: PMC8658988 DOI: 10.3390/molecules26237131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/27/2023] Open
Abstract
Background: Platelet-rich fibrin (PRF) has gained popularity in craniofacial surgery, as it provides an excellent reservoir of autologous growth factors (GFs) that are essential for bone regeneration. However, the low elastic modulus, short-term clinical application, poor storage potential and limitations in emergency therapy use restrict its more widespread clinical application. This study fabricates lyophilised PRF (Ly-PRF), evaluates its physical and biological properties, and explores its application for craniofacial tissue engineering purposes. Material and methods: A lyophilisation method was applied, and the outcome was evaluated and compared with traditionally prepared PRF. We investigated how lyophilisation affected PRF’s physical characteristics and biological properties by determining: (1) the physical and morphological architecture of Ly-PRF using SEM, and (2) the kinetic release of PDGF-AB using ELISA. Results: Ly-PRF exhibited a dense and homogeneous interconnected 3D fibrin network. Moreover, clusters of morphologically consistent cells of platelets and leukocytes were apparent within Ly-PRF, along with evidence of PDGF-AB release in accordance with previously reports. Conclusions: The protocol established in this study for Ly-PRF preparation demonstrated versatility, and provides a biomaterial with growth factor release for potential use as a craniofacial bioscaffold.
Collapse
Affiliation(s)
- Nurul Aida Ngah
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (D.C.T.); (J.R.); (P.R.C.); (H.M.H.)
- Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Malaysia
- Correspondence:
| | - George J. Dias
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
| | - Darryl C. Tong
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (D.C.T.); (J.R.); (P.R.C.); (H.M.H.)
| | - Siti Noor Fazliah Mohd Noor
- Craniofacial and Biomaterial Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Malaysia;
| | - Jithendra Ratnayake
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (D.C.T.); (J.R.); (P.R.C.); (H.M.H.)
| | - Paul R. Cooper
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (D.C.T.); (J.R.); (P.R.C.); (H.M.H.)
| | - Haizal Mohd Hussaini
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (D.C.T.); (J.R.); (P.R.C.); (H.M.H.)
- Faculty of Dental Medicine, Kampus A Universitas Airlangga, Surabaya 60132, Indonesia
| |
Collapse
|
4
|
Asnaashari S, Amjad E, Sokouti B. A comprehensive investigation on liver regeneration: a meta-analysis and systems biology approach. Clin Exp Hepatol 2021; 7:183-190. [PMID: 34295986 PMCID: PMC8284170 DOI: 10.5114/ceh.2021.107564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/14/2021] [Indexed: 12/15/2022] Open
Abstract
AIM OF THE STUDY Liver regeneration is one of the essential fields of regenerative medicine as a branch of tissue engineering and molecular biology that draws global researchers' attention. This study aims to conduct a systematic review and meta-analysis on the high-throughput gene expression microarray dataset of liver regeneration on the NCBI-GEO database to identify the significant genes and signaling pathways and confirm the genes from literature studies on associated diseases. MATERIAL AND METHODS We thoroughly searched the NCBI-GEO database to retrieve and screen the GEO microarray datasets' contents. Due to the inclusion of different species in eligible GEO datasets in the meta-analysis, the list of significant genes for the random-effects model were identified. Moreover, we carried out detailed gene analyses for three main gene ontology components and the KEGG signaling pathway. Furthermore, we investigated the possibility of genes' association with liver cancer through the Kaplan-Meier plot. RESULTS The random-effects model from six eligible GEO datasets identified 71 genes with eight down-regulated and 63 up-regulated genes. The target genes are involved in various cellular functions such as cell proliferation, cell death, and cell cycle control. Finally, we noted that 58 out of 71 genes are associated with different types of diseases related explicitly to other liver and inflammation diseases. CONCLUSIONS The current study assessed various GEO datasets at the early stages of liver regeneration with promising results. The present systematic review and meta-analysis results are beneficial for future novel drug design and discovery specifically for patients in the liver transplantation process.
Collapse
Affiliation(s)
| | | | - Babak Sokouti
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Koga T, Nakatani Y, Ohba S, Hara M, Sumita Y, Nagai K, Asahina I. Clinical Safety Assessment of Autologous Freeze-Drying Platelet-Rich Plasma for Bone Regeneration in Maxillary Sinus Floor Augmentation: A Pilot Study. J Clin Med 2021; 10:jcm10081678. [PMID: 33919726 PMCID: PMC8070716 DOI: 10.3390/jcm10081678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 12/29/2022] Open
Abstract
The purpose of this clinical study is to evaluate the safety and preliminary efficacy of autologous freeze-drying platelet-rich plasma (FD-PRP) on bone regeneration in maxillary sinus floor augmentation as a preliminary pilot study. Five patients that required sinus floor augmentation to facilitate the placement of dental implants participated in this clinical study. The PRP was prepared from the autologous peripheral blood and was lyophilized and stored at −20 °C for 4 weeks before surgery. At surgery, triple-concentrated FD-PRP (x3FD-PRP) mixed with synthetic bone grafting materials was rehydrated following the transplantation into the sinus floor. The primary outcome was a safety verification of x3FD-PRP, evaluated in terms of the clinical course and consecutive blood tests. The secondary outcome was clinical efficacy focused on bone regeneration in sinus floor augmentation evaluated by radiographic examination and implant stability. There were no adverse events, such as systemic complications, excessive inflammatory reactions, severe infection, or local site healing complications, besides those on the usual course associated with surgery. Vertical augmented height was maintained, and the initial stability of implants was achieved post-operatively in 6 months. The results obtained in this study suggest that x3FD-PRP can be used safely for bone engineering in clinical practice. Further studies are required to draw a conclusion concerning the efficacy of x3FD-PRP since this was a pilot study with a single arm and a small sample size.
Collapse
Affiliation(s)
- Takamitsu Koga
- Department of Regenerative Oral Surgery, Institute of Biomedical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (T.K.); (Y.N.); (S.O.); (M.H.)
- Department of Dentistry and Oral Surgery, Imaki-ire General Hospital, Kagoshima 892-8502, Japan
| | - Yuya Nakatani
- Department of Regenerative Oral Surgery, Institute of Biomedical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (T.K.); (Y.N.); (S.O.); (M.H.)
| | - Seigo Ohba
- Department of Regenerative Oral Surgery, Institute of Biomedical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (T.K.); (Y.N.); (S.O.); (M.H.)
| | - Masahito Hara
- Department of Regenerative Oral Surgery, Institute of Biomedical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (T.K.); (Y.N.); (S.O.); (M.H.)
| | - Yoshinori Sumita
- Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan;
| | - Kazuhiro Nagai
- Transfusion and Cell Therapy Unit, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan;
| | - Izumi Asahina
- Department of Regenerative Oral Surgery, Institute of Biomedical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; (T.K.); (Y.N.); (S.O.); (M.H.)
- Correspondence: ; Tel.: +81-95-819-7704; Fax: +81-95-819-7705
| |
Collapse
|
6
|
Ngah NA, Ratnayake J, Cooper PR, Dias GJ, Tong DC, Mohd Noor SNF, Hussaini HM. Potential of Lyophilized Platelet Concentrates for Craniofacial Tissue Regenerative Therapies. Molecules 2021; 26:molecules26030517. [PMID: 33498167 PMCID: PMC7863735 DOI: 10.3390/molecules26030517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 01/01/2023] Open
Abstract
Objective: The use of platelet concentrates (PCs) in oral and maxillofacial surgery, periodontology, and craniofacial surgery has been reported. While PCs provide a rich reservoir of autologous bioactive growth factors for tissue regeneration, their drawbacks include lack of utility for long-term application, low elastic modulus and strength, and limited storage capability. These issues restrict their broader application. This review focuses on the lyophilization of PCs (LPCs) and how this processing approach affects their biological and mechanical properties for application as a bioactive scaffold for craniofacial tissue regeneration. Materials and Methods: A comprehensive search of five electronic databases, including Medline, PubMed, EMBASE, Web of Science, and Scopus, was conducted from 1946 until 2019 using a combination of search terms relating to this topic. Results: Ten manuscripts were identified as being relevant. The use of LPCs was mostly studied in in vitro and in vivo craniofacial bone regeneration models. Notably, one clinical study reported the utility of LPCs for guided bone regeneration prior to dental implant placement. Conclusions: Lyophilization can enhance the inherent characteristics of PCs and extends shelf-life, enable their use in emergency surgery, and improve storage and transportation capabilities. In light of this, further preclinical studies and clinical trials are required, as LPCs offer a potential approach for clinical application in craniofacial tissue regeneration.
Collapse
Affiliation(s)
- Nurul Aida Ngah
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (N.A.N.); (P.R.C.); (D.C.T.); (H.M.H.)
| | - Jithendra Ratnayake
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (N.A.N.); (P.R.C.); (D.C.T.); (H.M.H.)
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- Correspondence:
| | - Paul R. Cooper
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (N.A.N.); (P.R.C.); (D.C.T.); (H.M.H.)
| | - George J. Dias
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
| | - Darryl C. Tong
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (N.A.N.); (P.R.C.); (D.C.T.); (H.M.H.)
| | - Siti Noor Fazliah Mohd Noor
- Craniofacial and Biomaterial Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Malaysia;
| | - Haizal Mohd Hussaini
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (N.A.N.); (P.R.C.); (D.C.T.); (H.M.H.)
| |
Collapse
|
7
|
Murdiastuti K, Olivia N, Kusumadewi WW, Sumito N. In Vitro Osteogenic Potential of Freeze-Dried Homologous Platelet-Rich Plasma. DENTAL HYPOTHESES 2021. [DOI: 10.4103/denthyp.denthyp_183_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
Andia I, Perez-Valle A, Del Amo C, Maffulli N. Freeze-Drying of Platelet-Rich Plasma: The Quest for Standardization. Int J Mol Sci 2020; 21:ijms21186904. [PMID: 32962283 PMCID: PMC7555364 DOI: 10.3390/ijms21186904] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
The complex biology of platelets and their involvement in tissue repair and inflammation have inspired the development of platelet-rich plasma (PRP) therapies for a broad array of medical needs. However, clinical advances are hampered by the fact that PRP products, doses and treatment protocols are far from being standardized. Freeze-drying PRP (FD-PRP) preserves platelet function, cytokine concentration and functionality, and has been proposed as a consistent method for product standardization and fabrication of an off-the-shelf product with improved stability and readiness for future uses. Here, we present the current state of experimental and clinical FD-PRP research in the different medical areas in which PRP has potential to meet prevailing medical needs. A systematic search, according to PRISMA (Preferred Reported Items for Systematic Reviews and Meta-Analyses) guidelines, showed that research is mostly focused on wound healing, i.e., developing combination products for ulcer management. Injectable hydrogels are investigated for lumbar fusion and knee conditions. In dentistry, combination products permit slow kinetics of growth factor release and functionalized membranes for guided bone regeneration.
Collapse
Affiliation(s)
- Isabel Andia
- Bioprinting Laboratory, Regenerative Therapies, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza Cruces 12, 48903 Barakaldo, Bizkaia, Spain; (A.P.-V.); (C.D.A.)
- Correspondence: ; Tel.: +34-609419897 or +34-946007964
| | - Arantza Perez-Valle
- Bioprinting Laboratory, Regenerative Therapies, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza Cruces 12, 48903 Barakaldo, Bizkaia, Spain; (A.P.-V.); (C.D.A.)
| | - Cristina Del Amo
- Bioprinting Laboratory, Regenerative Therapies, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza Cruces 12, 48903 Barakaldo, Bizkaia, Spain; (A.P.-V.); (C.D.A.)
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, University of Salerno School of Medicine and Dentristry, 84084 Salerno, Italy;
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London E1 4DG, UK
| |
Collapse
|
9
|
The Platelet Concentrates Therapy: From the Biased Past to the Anticipated Future. Bioengineering (Basel) 2020; 7:bioengineering7030082. [PMID: 32751638 PMCID: PMC7552713 DOI: 10.3390/bioengineering7030082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022] Open
Abstract
The ultimate goal of research on platelet concentrates (PCs) is to develop a more predictable PC therapy. Because platelet-rich plasma (PRP), a representative PC, was identified as a possible therapeutic agent for bone augmentation in the field of oral surgery, PRP and its derivative, platelet-rich fibrin (PRF), have been increasingly applied in a regenerative medicine. However, a rise in the rate of recurrence (e.g., in tendon and ligament injuries) and adverse (or nonsignificant) clinical outcomes associated with PC therapy have raised fundamental questions regarding the validity of the therapy. Thus, rigorous evidence obtained from large, high-quality randomized controlled trials must be presented to the concerned regulatory authorities of individual countries or regions. For the approval of the regulatory authorities, clinicians and research investigators should understand the real nature of PCs and PC therapy (i.e., adjuvant therapy), standardize protocols of preparation (e.g., choice of centrifuges and tubes) and clinical application (e.g., evaluation of recipient conditions), design bias-minimized randomized clinical trials, and recognize superfluous brand competitions that delay sound progress. In this review, we retrospect the recent past of PC research, reconfirm our ultimate goals, and discuss what will need to be done in future.
Collapse
|
10
|
Takahashi K, Liang C, Oda T, Ohkohchi N. Platelet and liver regeneration after liver surgery. Surg Today 2019; 50:974-983. [PMID: 31720801 DOI: 10.1007/s00595-019-01890-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/03/2019] [Indexed: 02/06/2023]
Abstract
The success of liver surgery, including resection and transplantation, is largely dependent on the ability of the liver to regenerate. Despite substantial improvement in surgical techniques and perioperative care, one of the main concerns is post-hepatectomy liver failure and early allograft dysfunction, both of which are associated with impaired liver regeneration. Recent studies have demonstrated the positive role of platelets in promoting liver regeneration and protecting hepatocytes; however, the underlying mechanisms responsible for these effects are not fully understood. In this review, we updated the accumulated evidence of the role of platelets in promoting liver regeneration, with a focus on liver resection and liver transplantation. The goal of these studies was to support the clinical implementation of platelet agents, such as thrombopoietin receptor agonists, to augment liver regeneration after liver surgery. This "platelet therapy" may become a treatment choice for post-hepatectomy liver failure and early allograft dysfunction.
Collapse
Affiliation(s)
- Kazuhiro Takahashi
- Department of Surgery, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan.,Department of Surgery, Mito Central Hospital, 1136-1, Rokutanda-cho, Mito, 311-1135, Japan
| | - Chen Liang
- Department of Surgery, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan.,Department of Surgery, Mito Central Hospital, 1136-1, Rokutanda-cho, Mito, 311-1135, Japan
| | - Tatsuya Oda
- Department of Surgery, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan.,Department of Surgery, Mito Central Hospital, 1136-1, Rokutanda-cho, Mito, 311-1135, Japan
| | - Nobuhiro Ohkohchi
- Department of Surgery, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan. .,Department of Surgery, Mito Central Hospital, 1136-1, Rokutanda-cho, Mito, 311-1135, Japan.
| |
Collapse
|
11
|
Takahashi A, Takahashi S, Tsujino T, Isobe K, Watanabe T, Kitamura Y, Watanabe T, Nakata K, Kawase T. Platelet adhesion on commercially pure titanium plates in vitro I: effects of plasma components and involvement of the von Willebrand factor and fibronectin. Int J Implant Dent 2019; 5:5. [PMID: 30799507 PMCID: PMC6387980 DOI: 10.1186/s40729-019-0160-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/14/2019] [Indexed: 12/13/2022] Open
Abstract
Background Platelet-rich plasma (PRP) is widely used in regenerative dentistry. Furthermore, it is often applied in the pretreatment of titanium implants to improve their surface bioaffinity and initial stability. However, effects of PRP application on implant surface at cellular and molecular levels remain poorly understood. Therefore, we examined platelet adhesion on commercially pure titanium (cp-Ti) plates, with a particular focus on fibrinogen (FGN), von Willebrand factor (vWF), and fibronectin (FN), in the presence or absence of plasma components. Methods Citrated blood samples were obtained from six healthy male volunteers, and pure-PRP (P-PRP) and pure platelet suspensions in phosphate-buffered saline (PBS) were prepared. Platelet adhesion on cp-Ti plate surface was evaluated by phalloidin staining and tetrazolium dye assay. Distribution of FGN, vWF, FN, albumin, CD62P, and CD63 was examined by immunocytochemical analysis. Results Platelets in PBS suspensions rapidly and time-dependently adhered to cp-Ti plate surface, but this adhesion was substantially disturbed by the presence of plasma components. FGN was most preferably adsorbed regardless of the presence or absence of plasma components, while vWF and FN showed greater accumulation on platelet adhesion area. Conclusions Although FGN is rapidly and abundantly adsorbed on cp-Ti plate surface, vWF and FN function as major platelet adhesion molecules in citrated blood samples. After pretreatment with P-PRP, however, platelets adhered to cp-Ti much less efficiently. Therefore, P-PRP pretreatment might not directly contribute to surface functionalization, initial stabilization, and osseointegration of machined or similar types of implants. Electronic supplementary material The online version of this article (10.1186/s40729-019-0160-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Taisuke Watanabe
- Division of Anatomy and Cell Biology of the Hard Tissue, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan
| | - Yutaka Kitamura
- Department of Oral and Maxillofacial Surgery, Matsumoto Dental University, Shiojiri, Japan
| | - Takao Watanabe
- Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| | - Koh Nakata
- Bioscience Medical Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan.
| |
Collapse
|
12
|
Tsukioka T, Hiratsuka T, Nakamura M, Watanabe T, Kitamura Y, Isobe K, Okudera T, Okudera H, Azuma A, Uematsu K, Nakata K, Kawase T. An on-site preparable, novel bone-grafting complex consisting of human platelet-rich fibrin and porous particles made of a recombinant collagen-like protein. J Biomed Mater Res B Appl Biomater 2018; 107:1420-1430. [PMID: 30270545 PMCID: PMC6585782 DOI: 10.1002/jbm.b.34234] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/13/2018] [Accepted: 08/18/2018] [Indexed: 12/17/2022]
Abstract
Platelet‐rich fibrin (PRF) is widely used in regenerative medicine. Nonetheless, major issues include its controversial effects on bone regeneration and a lack of quality‐assured glass tubes required for coagulation. We used porous particles (FBG) comprising a recombinant RGD motif‐enriched collagen I‐like protein to activate the coagulation pathway and examined the effects of the resulting PRF–FBG complex on bone regeneration. Human whole‐blood samples were mixed with FBG in plastic tubes and centrifuged to prepare a PRF–FBG complex. Platelet‐derived growth factor‐BB (PDGF‐BB) levels and cell growth activity were determined by ELISA and a bioassay using osteoblasts. Bone regenerative activity was assessed using a mouse model of calvarial bone defect. FBG facilitated PRF‐like matrix formation during centrifugation. In this PRF–FBG complex, the microstructure of fibrin fibers was similar to that of PRF prepared conventionally in glass tubes. PDGF‐BB levels and mitogenic action were not significantly influenced by FBG. In the bone defect model, although PRF did not exert any significant positive effects on its own, in combination with FBG, it synergistically stimulated new bone formation. This study demonstrated that incorporation of FBG into whole‐blood samples induces PRF formation without the aid of glass tubes. The resulting PRF–FBG complex could be a promising bone grafting material in clinical settings. © 2018 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1420–1430, 2019.
Collapse
Affiliation(s)
| | - Takahiro Hiratsuka
- Bioscience & Technology Development Center, FIJIFILM Corporation, Kanagawa, Japan
| | | | | | | | | | | | | | - Akihiko Azuma
- Bioscience & Technology Development Center, FIJIFILM Corporation, Kanagawa, Japan
| | - Kohya Uematsu
- Division of Implantology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Koh Nakata
- Bioscience Medical Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan
| |
Collapse
|
13
|
Cieślik-Bielecka A, Reichert P, Skowroński R, Królikowska A, Bielecki T. A new aspect of in vitro antimicrobial leukocyte- and platelet-rich plasma activity based on flow cytometry assessment. Platelets 2018; 30:728-736. [PMID: 30252585 DOI: 10.1080/09537104.2018.1513472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The current literature suggests that the antibacterial effect of leukocyte- and platelet-rich plasma (L-PRP) is directly related to platelet and leukocyte concentrations. The aim of this study was twofold: first, to evaluate the antimicrobial effect of L-PRP against selected bacterial strains in vitro, and second, to correlate this effect with leukocyte and platelet content in the final concentration. Blood was collected from 20 healthy males, and L-PRP, acellular plasma (AP), and autologous thrombin were consecutively prepared. Flow cytometry analysis of the blood, L-PRP, and AP was performed. The L-PRP gel, liquid L-PRP, and thrombin samples were tested in vitro for their antibacterial properties against seven selected bacterial strains using the Kirby-Bauer disk-diffusion method. There was notable antimicrobial activity against selected bacterial strains. No statistically significant correlations between antimicrobial activities and the platelet concentration in L-PRP were observed. Statistically significant positive correlations between selected leukocyte subtypes and antimicrobial activity were noted. A negative correlation was found between elevated monocyte count and antimicrobial activity of L-PRP against one bacterial strain studied. L-PRP possesses antimicrobial activity and can be potentially useful in the fight against certain postoperative infections. The bactericidal effect of L-PRP is caused by leukocytes, and there exists a relationship among selected leukocyte subtypes and L-PRP antimicrobial activity.
Collapse
Affiliation(s)
| | - Paweł Reichert
- b Division of Sports Medicine, Department of Physiotherapy, Faculty of Health Sciences , Wroclaw Medical University , Wroclaw , Poland
| | - Rafał Skowroński
- c Department of Orthopaedics , Medical University of Białystok , Białystok , Poland
| | - Aleksandra Królikowska
- d Department of Physiotherapy , The College of Physiotherapy in Wroclaw , Wroclaw , Poland
| | - Tomasz Bielecki
- e Department of Orthopaedics , Medical University of Silesia, Trauma Center , Sosnowiec , Poland
| |
Collapse
|
14
|
DURUKSU G, POLAT S, KAYİŞ L, EKİMCİ GÜRCAN N, GACAR G, YAZIR Y. Improvement of the insulin secretion from beta cells encapsulated in alginate/poly-L- histidine/alginate microbeads by platelet-rich plasma. Turk J Biol 2018; 42:297-306. [PMID: 30814893 PMCID: PMC6392160 DOI: 10.3906/biy-1802-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Type 1 diabetes is clinically characterized as the loss of control of glucose homeostasis due to the reduced number of insulinproducing cells. Long-term glycemic control after implantation could be maintained by preserving the cell viability and tissue-specific functions during the process of microencapsulation. In this study, alginate solution was supplemented with platelet-rich plasma (PRP) to improve the viability and preserve the cell functions during the encapsulation of a beta cell line (BRIN-BD11). Cell viability was assessed and insulin secretion and insulin stimulation index were evaluated. eTh polymerization of alginate with PRP enhanced the viability up to 61% in the alginate microbeads. PRP supplementation to the alginate composition not only increased the number of viable cells by 1.95-fold, but the insulin secretion also improved by about 66%. eTh stimulation index, however, was not affected by the PRP supplementation.
Collapse
Affiliation(s)
- Gökhan DURUKSU
- Center for Stem Cell and Gene eThrapies Research and Practice, Kocaeli University
,
İzmit, Kocaeli
,
Turkey
- Department of Stem Cells, Institute of Health Sciences, Kocaeli University
,
İzmit, Kocaeli
,
Turkey
| | - Selen POLAT
- Department of Stem Cells, Institute of Health Sciences, Kocaeli University
,
İzmit, Kocaeli
,
Turkey
| | - Leyla KAYİŞ
- Department of Stem Cells, Institute of Health Sciences, Kocaeli University
,
İzmit, Kocaeli
,
Turkey
| | - Nur EKİMCİ GÜRCAN
- Department of Stem Cells, Institute of Health Sciences, Kocaeli University
,
İzmit, Kocaeli
,
Turkey
| | - Gülçin GACAR
- Center for Stem Cell and Gene eThrapies Research and Practice, Kocaeli University
,
İzmit, Kocaeli
,
Turkey
- Department of Stem Cells, Institute of Health Sciences, Kocaeli University
,
İzmit, Kocaeli
,
Turkey
| | - Yusufhan YAZIR
- Center for Stem Cell and Gene eThrapies Research and Practice, Kocaeli University
,
İzmit, Kocaeli
,
Turkey
- Department of Histology and Embryology, School of Medicine, Kocaeli University
,
İzmit, Kocaeli
,
Turkey
- Department of Stem Cells, Institute of Health Sciences, Kocaeli University
,
İzmit, Kocaeli
,
Turkey
| |
Collapse
|
15
|
Evaluation of 3D-Printed Polycaprolactone Scaffolds Coated with Freeze-Dried Platelet-Rich Plasma for Bone Regeneration. MATERIALS 2017; 10:ma10070831. [PMID: 28773189 PMCID: PMC5551874 DOI: 10.3390/ma10070831] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 12/22/2022]
Abstract
Three-dimensional printing is one of the most promising techniques for the manufacturing of scaffolds for bone tissue engineering. However, a pure scaffold is limited by its biological properties. Platelet-rich plasma (PRP) has been shown to have the potential to improve the osteogenic effect. In this study, we improved the biological properties of scaffolds by coating 3D-printed polycaprolactone (PCL) scaffolds with freeze-dried and traditionally prepared PRP, and we evaluated these scaffolds through in vitro and in vivo experiments. In vitro, we evaluated the interaction between dental pulp stem cells (DPSCs) and the scaffolds by measuring cell proliferation, alkaline phosphatase (ALP) activity, and osteogenic differentiation. The results showed that freeze-dried PRP significantly enhanced ALP activity and the mRNA expression levels of osteogenic genes (ALP, RUNX2 (runt-related gene-2), OCN (osteocalcin), OPN (osteopontin)) of DPSCs (p < 0.05). In vivo, 5 mm calvarial defects were created, and the PRP-PCL scaffolds were implanted. The data showed that compared with traditional PRP-PCL scaffolds or bare PCL scaffolds, the freeze-dried PRP-PCL scaffolds induced significantly greater bone formation (p < 0.05). All these data suggest that coating 3D-printed PCL scaffolds with freeze-dried PRP can promote greater osteogenic differentiation of DPSCs and induce more bone formation, which may have great potential in future clinical applications.
Collapse
|
16
|
Freeze-Dried Human Platelet-Rich Plasma Retains Activation and Growth Factor Expression after an Eight-Week Preservation Period. Asian Spine J 2017; 11:329-336. [PMID: 28670400 PMCID: PMC5481587 DOI: 10.4184/asj.2017.11.3.329] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/28/2016] [Accepted: 11/02/2016] [Indexed: 01/08/2023] Open
Abstract
Study Design Controlled laboratory study. Purpose This study aimed to evaluate the efficacy of platelet-rich plasma (PRP) stored at room temperature (RT), frozen, or after freeze-drying. Overview of Literature PRP enriches tissue repair and regeneration, and is a novel treatment option for musculoskeletal pathologies. However, whether biological activity is preserved during PRP storage remains uncertain. Methods PRP was prepared from blood of 12 healthy human volunteers (200 mL/person) and stored using three methods: PRP was stored at RT with shaking, PRP was frozen and stored at −80℃, or PRP was freeze-dried and stored at RT. Platelet counts and growth factor content were examined immediately after preparation, as well as 2, 4, and 8 weeks after storage. Platelet activation rate was quantified by flow cytometry. Results Platelet counts were impossible to determine in many RT samples after 2 weeks, but they remained at constant levels in frozen and freeze-dried samples, even after 8 weeks of storage. Flow cytometry showed approximately 80% activation of the platelets regardless of storage conditions. Almost no growth factors were detected in the RT samples after 8 weeks, while low but significant expression was detected in the frozen and freeze-dried PRP. Over time, the mean relative concentrations of various growth factors decreased significantly or disappeared in the RT group. In the frozen group, levels were maintained for 4 weeks, but decreased significantly by 8 weeks (p <0.05). The freeze-dried group maintained baseline levels of growth factors for the entire 8-week duration. Conclusions Freeze-drying enables PRP storage while maintaining bioactivity and efficacy for extended periods.
Collapse
|
17
|
Mozgan EM, Edelmayer M, Janjić K, Pensch M, Fischer MB, Moritz A, Agis H. Release kinetics and mitogenic capacity of collagen barrier membranes supplemented with secretome of activated platelets - the in vitro response of fibroblasts of the periodontal ligament and the gingiva. BMC Oral Health 2017; 17:66. [PMID: 28327149 PMCID: PMC5361806 DOI: 10.1186/s12903-017-0357-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/03/2017] [Indexed: 01/08/2023] Open
Abstract
Background Platelet preparations can stimulate the healing process and have mitogenic properties. We hypothesized that collagen barrier membranes (CBM), clinically used in guided bone regeneration and guided tissue regeneration, can serve as carriers for platelet secretome. Methods Secretome was generated from washed platelets and unwashed platelets (washed/unwashed PSEC) and lyophilized onto CBM. Overall appearance of CBM was evaluated by scanning electron microscopy. The impact of PSEC on cell attachment was measured based on fluorescence microscopy with DiI-labeled cells. To assess the release kinetics, supernatants of CBM were collected and medium was replaced at hour 1–48. The mitogenic effect was evaluated with periodontal fibroblasts. Furthermore, the release of total protein, platelet-derived growth factor (PDGF)-BB, and transforming growth factor (TGF) β1 was measured. Results CBM overall appearance and cell attachment was not modulated by PSEC. Supernatants taken after one hour induced a mitogenic response in fibroblasts and showed the highest levels of total protein, TGFβ1 and PDGF-BB. These effects decreased rapidly in subsequent supernatants. While supernatants of CBM loaded with unwashed PSEC induced a stronger mitogenic response than supernatants of CBM loaded with washed PSEC this difference between the PSEC preparations was not observed when cells were seeded on 48–hours-washed CBM. Conclusions CBM release platelet-derived factors in continuously declining release kinetics.
Collapse
Affiliation(s)
- Eva-Maria Mozgan
- Department of Oral Surgery, School of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Donaueschingenstr. 13, 1200, Vienna, Austria
| | - Michael Edelmayer
- Department of Oral Surgery, School of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Donaueschingenstr. 13, 1200, Vienna, Austria
| | - Klara Janjić
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Donaueschingenstr. 13, 1200, Vienna, Austria
| | - Manuela Pensch
- Department of Oral Surgery, School of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Donaueschingenstr. 13, 1200, Vienna, Austria
| | - Michael B Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.,Center for Biomedical Technology, Danube University Krems, Dr.-Karl-Dorrek-Straße 30, Krems, 3500, Austria
| | - Andreas Moritz
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Donaueschingenstr. 13, 1200, Vienna, Austria
| | - Hermann Agis
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria. .,Austrian Cluster for Tissue Regeneration, Donaueschingenstr. 13, 1200, Vienna, Austria.
| |
Collapse
|
18
|
Knoop C, Edelmayer M, Janjić K, Pensch M, Fischer MB, Gruber R, Agis H. Difference in release kinetics of unwashed and washed platelet-released supernatants from bone substitute materials: the impact of platelet preparation modalities. J Periodontal Res 2017; 52:772-786. [DOI: 10.1111/jre.12447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2016] [Indexed: 12/22/2022]
Affiliation(s)
- C. Knoop
- Department of Conservative Dentistry and Periodontology; School of Dentistry; Medical University of Vienna; Vienna Austria
- Austrian Cluster for Tissue Regeneration; Vienna Austria
| | - M. Edelmayer
- Austrian Cluster for Tissue Regeneration; Vienna Austria
- Department of Oral Surgery; School of Dentistry; Medical University of Vienna; Vienna Austria
| | - K. Janjić
- Department of Conservative Dentistry and Periodontology; School of Dentistry; Medical University of Vienna; Vienna Austria
- Austrian Cluster for Tissue Regeneration; Vienna Austria
| | - M. Pensch
- Austrian Cluster for Tissue Regeneration; Vienna Austria
- Department of Oral Surgery; School of Dentistry; Medical University of Vienna; Vienna Austria
| | - M. B. Fischer
- Department of Blood Group Serology and Transfusion Medicine; Medical University of Vienna; Vienna Austria
- Center for Biomedical Technology; Danube University Krems; Krems Austria
| | - R. Gruber
- Austrian Cluster for Tissue Regeneration; Vienna Austria
- Department of Oral Biology; School of Dentistry; Medical University of Vienna; Vienna Austria
| | - H. Agis
- Department of Conservative Dentistry and Periodontology; School of Dentistry; Medical University of Vienna; Vienna Austria
- Austrian Cluster for Tissue Regeneration; Vienna Austria
| |
Collapse
|
19
|
Isobe K, Suzuki M, Watanabe T, Kitamura Y, Suzuki T, Kawabata H, Nakamura M, Okudera T, Okudera H, Uematsu K, Nakata K, Tanaka T, Kawase T. Platelet-rich fibrin prepared from stored whole-blood samples. Int J Implant Dent 2017; 3:6. [PMID: 28251561 PMCID: PMC5332319 DOI: 10.1186/s40729-017-0068-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/15/2017] [Indexed: 11/29/2022] Open
Abstract
Background In regenerative therapy, self-clotted platelet concentrates, such as platelet-rich fibrin (PRF), are generally prepared on-site and are immediately used for treatment. If blood samples or prepared clots can be preserved for several days, their clinical applicability will expand. Here, we prepared PRF from stored whole-blood samples and examined their characteristics. Methods Blood samples were collected from non-smoking, healthy male donors (aged 27–67 years, N = 6), and PRF clots were prepared immediately or after storage for 1–2 days. Fibrin fiber was examined by scanning electron microscopy. Bioactivity was evaluated by means of a bioassay system involving human periosteal cells, whereas PDGF-BB concentrations were determined by an enzyme-linked immunosorbent assay. Results Addition of optimal amounts of a 10% CaCl2 solution restored the coagulative ability of whole-blood samples that contained an anticoagulant (acid citrate dextrose) and were stored for up to 2 days at ambient temperature. In PRF clots prepared from the stored whole-blood samples, the thickness and cross-links of fibrin fibers were almost identical to those of freshly prepared PRF clots. PDGF-BB concentrations in the PRF extract were significantly lower in stored whole-blood samples than in fresh samples; however, both extracts had similar stimulatory effects on periosteal-cell proliferation. Conclusions Quality of PRF clots prepared from stored whole-blood samples is not reduced significantly and can be ensured for use in regenerative therapy. Therefore, the proposed method enables a more flexible treatment schedule and choice of a more suitable platelet concentrate immediately before treatment, not after blood collection.
Collapse
Affiliation(s)
| | | | | | | | - Taiji Suzuki
- Tokyo Plastic Dental Society, Kita-ku, Tokyo, Japan
| | | | | | | | | | - Kohya Uematsu
- Division of Oral Implantology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Koh Nakata
- Bioscience Medical Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Takaaki Tanaka
- Department of Materials Science and Technology, Niigata University, Niigata, Japan
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan.
| |
Collapse
|
20
|
Watanabe T, Isobe K, Suzuki T, Kawabata H, Nakamura M, Tsukioka T, Okudera T, Okudera H, Uematsu K, Okuda K, Nakata K, Kawase T. An Evaluation of the Accuracy of the Subtraction Method Used for Determining Platelet Counts in Advanced Platelet-Rich Fibrin and Concentrated Growth Factor Preparations. Dent J (Basel) 2017; 5:dj5010007. [PMID: 29563413 PMCID: PMC5806990 DOI: 10.3390/dj5010007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/16/2016] [Accepted: 01/06/2017] [Indexed: 01/29/2023] Open
Abstract
Platelet concentrates should be quality-assured of purity and identity prior to clinical use. Unlike for the liquid form of platelet-rich plasma, platelet counts cannot be directly determined in solid fibrin clots and are instead calculated by subtracting the counts in other liquid or semi-clotted fractions from those in whole blood samples. Having long suspected the validity of this method, we herein examined the possible loss of platelets in the preparation process. Blood samples collected from healthy male donors were immediately centrifuged for advanced platelet-rich fibrin (A-PRF) and concentrated growth factors (CGF) according to recommended centrifugal protocols. Blood cells in liquid and semi-clotted fractions were directly counted. Platelets aggregated on clot surfaces were observed by scanning electron microscopy. A higher centrifugal force increased the numbers of platelets and platelet aggregates in the liquid red blood cell fraction and the semi-clotted red thrombus in the presence and absence of the anticoagulant, respectively. Nevertheless, the calculated platelet counts in A-PRF/CGF preparations were much higher than expected, rendering the currently accepted subtraction method inaccurate for determining platelet counts in fibrin clots. To ensure the quality of solid types of platelet concentrates chairside in a timely manner, a simple and accurate platelet-counting method should be developed immediately.
Collapse
Affiliation(s)
| | - Kazushige Isobe
- Tokyo Plastic Dental Society, Kita-ku, Tokyo 114-0002, Japan.
| | - Taiji Suzuki
- Tokyo Plastic Dental Society, Kita-ku, Tokyo 114-0002, Japan.
| | - Hideo Kawabata
- Tokyo Plastic Dental Society, Kita-ku, Tokyo 114-0002, Japan.
| | | | | | | | - Hajime Okudera
- Tokyo Plastic Dental Society, Kita-ku, Tokyo 114-0002, Japan.
| | - Kohya Uematsu
- Division of Implantology, Niigata University Medical and Dental Hospital, Niigata 951-8514, Japan.
| | - Kazuhiro Okuda
- Division of Periodontology, Institute of Medicine and Dentistry, Niigata University, Niigata 951-8514, Japan.
| | - Koh Nakata
- Bioscience Medical Research Center, Niigata University Medical and Dental Hospital, Niigata 951-8520, Japan.
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Institute of Medicine and Dentistry, Niigata University, Niigata 951-8514, Japan.
| |
Collapse
|
21
|
Elnehrawy NY, Ibrahim ZA, Eltoukhy AM, Nagy HM. Assessment of the efficacy and safety of single platelet-rich plasma injection on different types and grades of facial wrinkles. J Cosmet Dermatol 2016; 16:103-111. [DOI: 10.1111/jocd.12258] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Naema Y Elnehrawy
- Department of Dermatology and Venereology; Faculty of Medicine; Tanta University Hospitals; Tanta University; Tanta Egypt
| | - Zeinab A Ibrahim
- Department of Dermatology and Venereology; Faculty of Medicine; Tanta University Hospitals; Tanta University; Tanta Egypt
| | - Azza M Eltoukhy
- Department of Dermatology and Venereology; Faculty of Medicine; Tanta University Hospitals; Tanta University; Tanta Egypt
| | - Hala M Nagy
- Clinical Pathology Department; Faculty of Medicine; Tanta University; Tanta Egypt
| |
Collapse
|
22
|
Diaz-Gomez L, Concheiro A, Alvarez-Lorenzo C, García-González CA. Growth factors delivery from hybrid PCL-starch scaffolds processed using supercritical fluid technology. Carbohydr Polym 2016; 142:282-92. [DOI: 10.1016/j.carbpol.2016.01.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/20/2016] [Accepted: 01/23/2016] [Indexed: 12/26/2022]
|
23
|
Kuffler DP. Platelet-Rich Plasma Promotes Axon Regeneration, Wound Healing, and Pain Reduction: Fact or Fiction. Mol Neurobiol 2015; 52:990-1014. [PMID: 26048672 DOI: 10.1007/s12035-015-9251-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 11/25/2022]
Abstract
Platelet-rich plasma (PRP) has been tested in vitro, in animal models, and clinically for its efficacy in enhancing the rate of wound healing, reducing pain associated with injuries, and promoting axon regeneration. Although extensive data indicate that PRP-released factors induce these effects, the claims are often weakened because many studies were not rigorous or controlled, the data were limited, and other studies yielded contrary results. Critical to assessing whether PRP is effective are the large number of variables in these studies, including the method of PRP preparation, which influences the composition of PRP; type of application; type of wounds; target tissues; and diverse animal models and clinical studies. All these variables raise the question of whether one can anticipate consistent influences and raise the possibility that most of the results are correct under the circumstances where PRP was tested. This review examines evidence on the potential influences of PRP and whether PRP-released factors could induce the reported influences and concludes that the preponderance of evidence suggests that PRP has the capacity to induce all the claimed influences, although this position cannot be definitively argued. Well-defined and rigorously controlled studies of the potential influences of PRP are required in which PRP is isolated and applied using consistent techniques, protocols, and models. Finally, it is concluded that, because of the purported benefits of PRP administration and the lack of adverse events, further animal and clinical studies should be performed to explore the potential influences of PRP.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, 201 Blvd. Del Valle, San Juan, 00901, Puerto Rico,
| |
Collapse
|
24
|
Kawase T. Platelet-rich plasma and its derivatives as promising bioactive materials for regenerative medicine: basic principles and concepts underlying recent advances. Odontology 2015; 103:126-35. [DOI: 10.1007/s10266-015-0209-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/16/2015] [Indexed: 11/29/2022]
|
25
|
Rodella LF, Bonazza V. Platelet preparations in dentistry: How? Why? Where? When? World J Stomatol 2015; 4:39-55. [DOI: 10.5321/wjs.v4.i2.39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/08/2015] [Accepted: 04/30/2015] [Indexed: 02/06/2023] Open
Abstract
The aim of this article is to review the outcomes of platelet preparations in dentistry. A structured electronic search discovered 348 articles, which described the use of autologous platelet concentrates with a relevance to clinical dentistry. Among these articles, 220 articles investigated platelet rich plasma, 99 investigated platelet rich fibrin, 22 investigated plasma rich in growth factors and 7 investigated the use of concentrated growth factors. Several studies reported beneficial treament outcomes in terms of enhanced bone and soft tissue regeneration.
Collapse
|
26
|
Kawase T, Tanaka T, Okuda K, Tsuchimochi M, Oda M, Hara T. Quantitative single-cell motility analysis of platelet-rich plasma-treated endothelial cells in vitro. Cytoskeleton (Hoboken) 2015; 72:246-55. [PMID: 25845465 DOI: 10.1002/cm.21221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/22/2015] [Accepted: 03/25/2015] [Indexed: 11/10/2022]
Abstract
Platelet-rich plasma (PRP) has been widely applied in regenerative therapy due to its high concentration of growth factors. Previous in vitro and in vivo studies have provided evidence supporting the angiogenic activity of PRP. To more directly demonstrate how PRP acts on endothelial cells, we examined the PRP-induced changes in the motility of human umbilical vein endothelial cells by examining the involvement of VEGF. Time-lapse quantitative imaging demonstrated that in the initial phase (∼2 h) of treatment, PRP substantially stimulated cell migration in a wound-healing assay. However, this effect of PRP was not sustained at significant levels beyond the initial phase. The average net distance of cell migration at 10 h was 0.45 ± 0.16 mm and 0.82 ± 0.23 mm in control and PRP-stimulated cells, respectively. This effect was also demonstrated with recombinant human VEGF and was significantly attenuated by a neutralizing anti-VEGF antibody. Immunofluorescent examination of paxillin and actin fibers demonstrated that PRP concomitantly up-regulated focal adhesion and cytoskeletal formation. Western blotting analysis of phosphorylated VEGFR2 demonstrated that PRP mainly stimulated the phosphorylation of immature VEGFR2 in a dose- and time-dependent manner, an action that was completely blocked by the neutralizing antibody. Taken together, these data suggest that PRP acts directly on endothelial cells via the activation of VEGFR2 to transiently up-regulate their motility. Thus, the possibility that PRP desensitizes target endothelial cells for a relatively long period of time after short-term activation should be considered when the controlled release system of PRP components is designed.
Collapse
Affiliation(s)
- Tomoyuki Kawase
- Division of Oral Bioengineering, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan.,Advanced Research Center, the Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Takaaki Tanaka
- Department of Materials Science and Technology, Niigata University, Niigata, Japan
| | - Kazuhiro Okuda
- Division of Periodontology, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan
| | - Makoto Tsuchimochi
- Advanced Research Center, the Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan.,Department of Oral and Maxillofacial Radiology, the Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Masafumi Oda
- Institute of Research Collaboration and Promotion, Niigata University, Niigata, Japan
| | - Toshiaki Hara
- Department of Mechanical and Control Engineering, Niigata Institute of Technology, Kashiwazaki, Japan
| |
Collapse
|
27
|
Díaz-Gómez L, Ballarin FM, Abraham GA, Concheiro A, Alvarez-Lorenzo C. Random and aligned PLLA : PRGF electrospun scaffolds for regenerative medicine. J Appl Polym Sci 2014. [DOI: 10.1002/app.41372] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Luis Díaz-Gómez
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia; Universidad de Santiago de Compostela; 15872- Santiago de Compostela Spain
| | - Florencia Montini Ballarin
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Universidad Nacional de Mar del Plata-CONICET; Argentina
| | - Gustavo A. Abraham
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Universidad Nacional de Mar del Plata-CONICET; Argentina
| | - Angel Concheiro
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia; Universidad de Santiago de Compostela; 15872- Santiago de Compostela Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia; Universidad de Santiago de Compostela; 15872- Santiago de Compostela Spain
| |
Collapse
|
28
|
Kawase T, Kamiya M, Kobayashi M, Tanaka T, Okuda K, Wolff LF, Yoshie H. The heat-compression technique for the conversion of platelet-rich fibrin preparation to a barrier membrane with a reduced rate of biodegradation. J Biomed Mater Res B Appl Biomater 2014; 103:825-31. [PMID: 25132655 DOI: 10.1002/jbm.b.33262] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/17/2014] [Accepted: 07/16/2014] [Indexed: 11/06/2022]
Abstract
Platelet-rich fibrin (PRF) was developed as an advanced form of platelet-rich plasma to eliminate xenofactors, such as bovine thrombin, and it is mainly used as a source of growth factor for tissue regeneration. Furthermore, although a minor application, PRF in a compressed membrane-like form has also been used as a substitute for commercially available barrier membranes in guided-tissue regeneration (GTR) treatment. However, the PRF membrane is resorbed within 2 weeks or less at implantation sites; therefore, it can barely maintain sufficient space for bone regeneration. In this study, we developed and optimized a heat-compression technique and tested the feasibility of the resulting PRF membrane. Freshly prepared human PRF was first compressed with dry gauze and subsequently with a hot iron. Biodegradability was microscopically examined in vitro by treatment with plasmin at 37°C or in vivo by subcutaneous implantation in nude mice. Compared with the control gauze-compressed PRF, the heat-compressed PRF appeared plasmin-resistant and remained stable for longer than 10 days in vitro. Additionally, in animal implantation studies, the heat-compressed PRF was observed at least for 3 weeks postimplantation in vivo whereas the control PRF was completely resorbed within 2 weeks. Therefore, these findings suggest that the heat-compression technique reduces the rate of biodegradation of the PRF membrane without sacrificing its biocompatibility and that the heat-compressed PRF membrane easily could be prepared at chair-side and applied as a barrier membrane in the GTR treatment.
Collapse
Affiliation(s)
- Tomoyuki Kawase
- Division of Oral Bioengineering, Institute of Medicine and Dentistry, Niigata University, Niigata, 951-8514, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Biodegradable electrospun nanofibers coated with platelet-rich plasma for cell adhesion and proliferation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 40:180-8. [PMID: 24857481 DOI: 10.1016/j.msec.2014.03.065] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 03/03/2014] [Accepted: 03/23/2014] [Indexed: 12/19/2022]
Abstract
Biodegradable electrospun poly(ε-caprolactone) (PCL) scaffolds were coated with platelet-rich plasma (PRP) to improve cell adhesion and proliferation. PRP was obtained from human buffy coat, and tested on human adipose-derived mesenchymal stem cells (MSCs) to confirm cell proliferation and cytocompatibility. Then, PRP was adsorbed on the PCL scaffolds via lyophilization, which resulted in a uniform sponge-like coating of 2.85 (S.D. 0.14) mg/mg. The scaffolds were evaluated regarding mechanical properties (Young's modulus, tensile stress and tensile strain), sustained release of total protein and growth factors (PDGF-BB, TGF-β1 and VEGF), and hemocompatibility. MSC seeded on the PRP-PCL nanofibers showed an increased adhesion and proliferation compared to pristine PCL fibers. Moreover, the adsorbed PRP enabled angiogenesis features observed as neovascularization in a chicken chorioallantoic membrane (CAM) model. Overall, these results suggest that PRP-PCL scaffolds hold promise for tissue regeneration applications.
Collapse
|