1
|
Chen R, Ma T, Du S, Luo J, Zhang H, Xu X, Cao Z, Yuan Z, Sun H, Liu M, Xiong B, Shi Q, Liu JY. Impaired fertility in 4930590J08Rik mutant male mice is associated with defective sperm energy metabolism. FASEB J 2022; 36:e22634. [PMID: 36331537 DOI: 10.1096/fj.202200805rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/22/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
Testis-specifically expressed genes are important for male reproduction according to their unique expression patterns. However, the functions of most of these genes in reproduction are unclear. Here, we showed that mouse 4930590J08Rik was a testis-specifically expressed gene. 4930590J08Rik knockout mice exhibited a delay in the first wave of spermatogenesis and a reduction of cauda epididymal sperm. Furthermore, knockout spermatozoa exhibited defective acrosome reactions and decreased progressive motility, which led to impaired in vivo fertilization. Transcriptome analysis of testes revealed that most of the differentially expressed genes in knockout testes were associated with metabolic processes. 4930590J08Rik knockout sperm exhibited oxidative phosphorylation deficiency and were highly dependent on increased anaerobic glycolysis to compensate for ATP demands. Taken together, the 4930590J08Rik-disrupted mouse partially mimics the phenotypes of human asthenospermia and oligozoospermia, which provides a new model for further understanding the pathogenesis of idiopathic male infertility.
Collapse
Affiliation(s)
- Rui Chen
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Tingbin Ma
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Shiyue Du
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Junyu Luo
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Huan Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Xuan Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhijian Cao
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Zhangqi Yuan
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Hao Sun
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Mugen Liu
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Wuhan, China
| | - Qinghua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Jing Yu Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
Sedaghat P, Masoumi R, Sharafi M, Hezavehei M, Shahverdi M, Rostami B, Esmaeili V. Sublethal Xanthine Oxidase Stress Prefreezing of Bull Sperm Improves the Post-Thaw Functionality and Fertility Potential Parameters. Biopreserv Biobank 2022. [PMID: 35861737 DOI: 10.1089/bio.2022.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oxidative stress during cryopreservation causes mechanical, biochemical, and structural damage to the sperm, leading to lower viability and fertility potential. In recent years, a novel method based on the use of mild stress for preconditioning of sperm before cryopreservation has been applied to improve the quality of thawed sperm, although its molecular mechanism remains unknown. In this study, we investigated the protective effects of sublethal oxidative stress by xanthine oxidase (XO) on thawed bull sperm performance through modulations of mitochondrial uncoupling protein 2 (UCP2) expression. Semen samples were collected from six bulls, then mixed and divided into four aliquots: frozen control (XO-0) and frozen groups treated with different concentrations of XO, 0.01 μM (XO-0.01), 0.1 μM (XO-0.1), and 1 μM (XO-1). Thawed sperm were evaluated for motion parameters, viability, acrosome integrity, mitochondria activity, membrane integrity, and UCP2 expression. A significant increase of total motility and viability rate was observed in XO-0.1 compared with other frozen groups (p < 0.05). The highest percentage of progressive motility was in XO-0.01 and XO-0.1 compared with other groups (p < 0.05). Moreover, a significantly higher level of sperm mitochondrial membrane potential and membrane integrity was observed in XO-0.1 (p < 0.05). We also found the lowest percentage of sperm mitochondria activity in XO-1 (p < 0.05). In addition, the highest expression of UCP2 was observed in XO-1 (p < 0.05). Our findings suggest that stress preconditioning of bull sperm before cryopreservation can improve thawed sperm functions, which might be mediated through an increase of UCP2 expression.
Collapse
Affiliation(s)
- Paniz Sedaghat
- Department of Animal Science, University of Zanjan, Zanjan, Iran.,Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Reza Masoumi
- Department of Animal Science, University of Zanjan, Zanjan, Iran
| | - Mohsen Sharafi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Animal Science, College of Agriculture, Tarbiat Modarres University, Tehran, Iran
| | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Behnam Rostami
- Department of Animal Science, University of Zanjan, Zanjan, Iran
| | - Vahid Esmaeili
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
3
|
Effects of early low temperature exposure on the growth, glycolipid metabolism and growth hormone (gh) gene methylation in the late stage of Chinese perch (Siniperca chuatsi). Comp Biochem Physiol B Biochem Mol Biol 2021; 259:110705. [PMID: 34958964 DOI: 10.1016/j.cbpb.2021.110705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022]
Abstract
Temperature is an important factor affecting the early development, growth and physiology of fish, as well as on aspects of feeding and metabolism. Here, we investigated the impact of low temperature on the growth, glycolipid metabolism and growth hormone (gh) gene methylation in the late stage of Chinese perch (Siniperca chuatsi). Chinese perch larvae were exposed to temperatures with 21 °C (low temperature group (LT)) and 25 °C (control group) for 7 days, and then the LT group was slowly heated to 25 °C and raised at this temperature for two months. Results indicated that the LT group exhibited significantly lower growth rate and weight gain rate than the control group (p < 0.05), but no obvious food intake (FI) were detected yet between LT group and control group. The larvae exposed at 21 °C relative to the 25 °C group had significant decreased transcript levels of GH-IGF axis genes (gh, igf1 and igf2) in Chinese perch juvenile (p < 0.05). Further analysis of the DNA methylation levels of gh showed that the LT group had higher at the CpG sites of -3029 and - 3032 than the control group in larvae (p < 0.05), whereas the DNA methylation levels at CpG sites of -2982 and - 3039 of gh were significantly lower compared with the control group in juveniles (p < 0.05). In addition, the plasma glucose was significantly increased in the LT group (p < 0.05), suggesting the metabolism of blood glucose slowed at low temperature. In larvae, the expressions of glycolipid metabolism genes (ins-ra and ins-rb) in LT group were significantly up-regulated compared to control group in larvae (p < 0.05), while down-regulated in juveniles (p < 0.05). The expression level of ucp2 mRNA was continuously up-regulated under low temperature stress. All these data demonstrate that early exposure to low temperature affected the growth and glycolipid metabolism of Chinese perch.
Collapse
|
4
|
Khosrozadeh F, Karimi A, Hezavehei M, Sharafi M, Shahverdi A. Preconditioning of bull semen with sub-lethal oxidative stress before cryopreservation: Possible mechanism of mitochondrial uncoupling protein 2. Cryobiology 2021; 104:63-69. [PMID: 34748771 DOI: 10.1016/j.cryobiol.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/31/2022]
Abstract
Preconditioning of sperm using sub-lethal oxidative stress before cryopreservation is an innovative approach that can improve sperm cryo-survival. Mitochondrial uncoupling proteins (UCPs) are critical in reducing ROS level during stress conditions. The aim of the current study was to investigate whether mild sub-lethal stress induced by low concentrations of nitric oxide and hydrogen peroxide has a protective effect on quality parameters of post-thaw bull semen through modulations of mitochondrial uncoupling protein 2 (UCP2) expression. Semen samples were collected from 6 mature Holstein bulls, then mixed and divided into 8 aliquots: fresh, frozen control and frozen groups treated with NO: 0.1 (NO-0.1), 1(NO-1), 10 μM (NO-10), and H2O2: 0.1(H2O2-0.1), 1(H2O2-1) and 10μM (H2O2-10). A significantly higher percentage of total motility, progressive motility and viability was observed in NO-1 and H2O2-10 compared to the other frozen groups (P < 0.05). Sperm exposed to 1 μM NO and 10μM H2O2 showed significantly increased percentages of mitochondria activity and membrane integrity (P < 0.05). Moreover, the lowest percentage of apoptotic percentage was observed in the NO-1 and H2O2-10 in comparison to the other frozen groups. In addition, the expression level of UCP2 was higher in the NO-1 and H2O2-10 compared to the other groups (P < 0.05). It can be concluded that stress preconditioning of bull sperm before cryopreservation can increase UCP2 expression of sperm, that can play a protective role against cryoinjury after thawing.
Collapse
Affiliation(s)
- Fatemeh Khosrozadeh
- Department of Animal Science, University of Tabriz, Tabriz, Iran; Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Amir Karimi
- Department of Animal Science, University of Tabriz, Tabriz, Iran.
| | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Mohsen Sharafi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Animal Science, College of Agriculture, Tarbiat Modarres University, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
5
|
Rodrigues RB, Uczay M, Brito VB, Godoy AC, Moura DJ, Vogel C, Vasconcelos ACN, Streit DP. Oxidative Stress and DNA Damage of Zebrafish Sperm at Different Stages of the Cryopreservation Process. Zebrafish 2021; 18:97-109. [PMID: 33650885 DOI: 10.1089/zeb.2020.1942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although gamete cryopreservation has facilitated advancement of reproduction research by allowing the storage of cells over prolonged periods of time, during freezing-thawing cycles, cells inevitably suffer from cryoinjuries. Here, we evaluate oxidative stress and DNA damage of zebrafish sperm at different stages of the cryopreservation process. It was generally observed that the freezing and thawing of the samples led to an increase in the generation of reactive oxygen species and the activity of the catalase enzyme and a reduction in the generation of sulfhydryl groups and superoxide dismutase activity. The alkaline comet assay demonstrated that DNA damage increased after equilibration time, with an even greater increase after freezing and thawing. The comet assay modified with the enzyme formamidopyrimidine glycosylase, and Endonuclease III demonstrated greater DNA damage than the standard comet assay, demonstrating a high degree of oxidation of purines and pyrimidines at all stages of cryopreservation. Our results show that the freeze and thaw processes cause greater oxidative stress and DNA damage than cryoprotectant toxicity during exposure at the equilibrium stage.
Collapse
Affiliation(s)
- Rômulo Batista Rodrigues
- Graduate Degree Program in Animal Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mariana Uczay
- Graduate Degree Program in Pharmacology and Therapeutics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Verônica Bidinotto Brito
- Department of Physiotherapy, Integrated Faculties of Taquara, Taquara, Brazil.,Laboratory of Toxicological Genetics, Postgraduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | | | - Dinara Jaqueline Moura
- Laboratory of Toxicological Genetics, Postgraduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Carla Vogel
- Biochemistry Laboratory, Multicenter Graduate Degree Program in Biochemistry and Molecular Biology, University of Santa Catarina State, Lages, Brazil
| | | | - Danilo Pedro Streit
- Graduate Degree Program in Animal Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
6
|
Rodrigues RB, Uczay M, Brito VB, Nunes Fossati AA, Godoy AC, Moura DJ, Vogel CIG, Nogueira Vasconcelos AC, Streit DP. Skim milk powder used as a non-permeable cryoprotectant reduces oxidative and DNA damage in cryopreserved zebrafish sperm. Cryobiology 2020; 97:76-84. [PMID: 33038414 DOI: 10.1016/j.cryobiol.2020.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 11/28/2022]
Abstract
Cryoprotectants play a vital role in the cryopreservation process, protecting biological samples from freezing damage. Here, we evaluate the effects of the combination and interaction of different extenders with permeable and non-permeable cryoprotectants, on the cryopreservation of Danio rerio sperm, analyzing the effects of cryopreservation through a broad approach to variables. Two extenders were used, Hank's balanced salt solution (HBSS) and Ginsburg's solution. Eight cryoprotective solutions (CS) were used: CS1 (HBSS + Me2SO 8%), CS2 (HBSS + Methanol 8%), CS3 (HBSS + Me2SO 8% + Skim milk powder 15%), CS4 (HBSS + Methanol 8% + Skim milk powder 15%), CS5 (Ginsburg + Me2SO 8%), CS6 (Ginsburg + Methanol 8%), CS7 (Ginsburg + Me2SO 8% + Skim milk powder 15%) and CS8 (Ginsburg + Methanol 8% + Skim milk powder 15%). The samples were cryopreserved in cryovials for 20 min on dry ice, stored in liquid nitrogen, thawed at 38 °C for 10 s, and analyzed. In addition to increasing viability, we show that powdered milk also allows for better preservation of the membrane and normal cell morphology, and protects the sperm cells from DNA damage and oxidative stress caused by cryopreservation.
Collapse
Affiliation(s)
- Rômulo Batista Rodrigues
- Graduate Degree Program in Animal Science, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Mariana Uczay
- Graduate Degree Program in Pharmacology and Therapeutics, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Verônica Bidinotto Brito
- Department of Physiotherapy, Integrated Faculties of Taquara, Taquara, RS, Brazil; Laboratory of Toxicological Genetics, Postgraduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil.
| | - Ana Amélia Nunes Fossati
- Graduate Degree Program in Animal Science, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | | | - Dinara Jaqueline Moura
- Laboratory of Toxicological Genetics, Postgraduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil.
| | - Carla Ivane Ganz Vogel
- Biochemistry Laboratory, Multicenter Graduate Degree Program in Biochemistry and Molecular Biology, University of Santa Catarina State, Lages, SC, Brazil.
| | | | - Danilo Pedro Streit
- Graduate Degree Program in Animal Science, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
7
|
da Costa BB, de Oliveira DL, Rodrigues RB, Gomes IC, Streit DP. Morphological abnormalities in zebrafish cryopreserved sperm. Cryobiology 2020; 97:235-237. [PMID: 32822643 DOI: 10.1016/j.cryobiol.2020.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 11/20/2022]
Abstract
The aim of the present study was to evaluate the effect of cryopreservation on the morphology of zebrafish sperm (Danio rerio). Sperm from 30 males were collected and divided in two treatments: fresh and cryopreserved semen. The following were measured sperm morphology, motility and membrane integrity. Cryopreservation reduced motility, the number of normal cells and the membrane integrity, as well as increased the percentage of sperm abnormalities. The most frequent types of morphological changes found in cryopreserved semen were macrocephaly, loose head, degenerated head, proximal gout, curled tail and short tail. This study opens the way for further investigations on morphological changes and for a new classification of these changes in fish semen due to cryopreservation.
Collapse
Affiliation(s)
- Bruna Bitencourt da Costa
- Aquam Research Group, Animal Science Research Program, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil.
| | - Diogo Losh de Oliveira
- Laboratory of Cellular Neurochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil
| | - Rômulo Batista Rodrigues
- Aquam Research Group, Animal Science Research Program, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil
| | - Itamar Cossina Gomes
- Aquam Research Group, Animal Science Research Program, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil
| | - Danilo Pedro Streit
- Aquam Research Group, Animal Science Research Program, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil
| |
Collapse
|
8
|
Cryoprotectants synergy improve zebrafish sperm cryopreservation and offspring skeletogenesis. Cryobiology 2019; 91:115-127. [PMID: 31605703 DOI: 10.1016/j.cryobiol.2019.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/06/2019] [Accepted: 10/03/2019] [Indexed: 01/17/2023]
Abstract
The synergy obtained by the combination of cryoprotectants is a successful strategy that can be beneficial on the optimization of zebrafish sperm cryopreservation. Recently, a protocol was established for this species using an electric ultrafreezer (-150 °C) performing cooling rate (-66 °C/min) and storage within one step. The ultimate objective of sperm cryopreservation is to generate healthy offspring. Therefore, the objective of this study was to select the most adequate cryoprotectant combination, for the previously established protocol, that generate high quality offspring with normal skeletogenesis. Among the permeating cryoprotectant concentrations studied 12.5% and 15% of N,N-dimethylformamide (DMF) yielded high post-thaw sperm quality and hatching rates. For these two concentrations, the presence of bovine serum albumin (10 mg/mL), egg yolk (10%), glycine (30 mM) and bicine (50 mM) was evaluated for post-thaw sperm motility, viability, in vitro fertilization success and offspring skeletal development (30 days post fertilization). Higher concentration of permeating cryoprotectant (15%) decreased the incidence of deformed arches and severe skeletal malformations, which suggests higher capacity to protect the cell against cold stress and DNA damage. Extender containing 15% DMF with Ctrl, Bicine and egg yolk were the non-permeating cryoprotectants with higher post-thaw quality. The use of these compounds results in a reduction in vertebral fusions, compressions and severity of skeletal malformations in the offspring. Therefore, these extender compositions are beneficial for the quality of zebrafish offspring sired by cryopreserved sperm with -66 °C/min freezing rate. To the best of our knowledge, this is the first report on skeletal development of the offspring sired by cryopreserved sperm performed with different freezing media compositions in zebrafish.
Collapse
|
9
|
Diogo P, Martins G, Quinzico I, Nogueira R, Gavaia PJ, Cabrita E. Electric ultrafreezer (- 150 °C) as an alternative for zebrafish sperm cryopreservation and storage. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1443-1455. [PMID: 29654541 DOI: 10.1007/s10695-018-0500-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Zebrafish sperm cryopreservation is a fundamental methodology to manage and back-up valuable genetic resources like transgenic and mutant strains. Cryopreservation usually requires liquid nitrogen for storage, which is expensive and hazardous. Our objective was to evaluate if electric ultrafreezers (- 150 °C) are a viable alternative for zebrafish sperm storage. Zebrafish sperm was cryopreserved in the same conditions (- 20 °C/min), stored either in liquid nitrogen or in an ultrafreezer, and thawed after 1 week, 1 month, and 3 months. Sperm motility, membrane integrity, and fertilization ability were assessed. There were no significant differences in motility and hatching rate throughout storage time. Additionally, we aimed at understanding if cryopreservation directly in an ultrafreezer (- 66 °C/min) could improve post-thaw sperm quality. Freezing at - 20 °C/min was performed as before, and compared to samples cryopreserved with a fast cooling rate by placing directly in an ultrafreezer (- 66 °C/min). Sperm quality was assessed according to motility, viability, DNA fragmentation, and apoptosis (annexin V). The - 66 °C/min cooling rate showed significantly higher membrane and DNA integrity, and lower number of cells in late apoptosis in comparison to the other treatments. This study showed that zebrafish sperm cryopreservation and storage in an ultrafreezer system is possible and a fast cooling rate directly in ultrafreezer improves post-thaw sperm quality.
Collapse
Affiliation(s)
- Patrícia Diogo
- Faculty of Sciences and Technology, University of Algarve, 8005-139, Faro, Portugal
- Centre of Marine Sciences, University of Algarve, 8005-139, Faro, Portugal
| | - Gil Martins
- Faculty of Sciences and Technology, University of Algarve, 8005-139, Faro, Portugal
- Centre of Marine Sciences, University of Algarve, 8005-139, Faro, Portugal
| | - Isa Quinzico
- Faculty of Sciences and Technology, University of Algarve, 8005-139, Faro, Portugal
| | - Rita Nogueira
- Faculty of Sciences and Technology, University of Algarve, 8005-139, Faro, Portugal
| | - Paulo J Gavaia
- Centre of Marine Sciences, University of Algarve, 8005-139, Faro, Portugal
- Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal
| | - Elsa Cabrita
- Faculty of Sciences and Technology, University of Algarve, 8005-139, Faro, Portugal.
- Centre of Marine Sciences, University of Algarve, 8005-139, Faro, Portugal.
| |
Collapse
|
10
|
Ge H, Zhang F, Duan P, Zhu N, Zhang J, Ye F, Shan D, Chen H, Lu X, Zhu C, Ge R, Lin Z. Mitochondrial Uncoupling Protein 2 in human cumulus cells is associated with regulating autophagy and apoptosis, maintaining gap junction integrity and progesterone synthesis. Mol Cell Endocrinol 2017; 443:128-137. [PMID: 28089824 DOI: 10.1016/j.mce.2017.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 01/24/2023]
Abstract
To explore the roles of mitochondrial Uncoupling Protein 2 (UCP2) in cumulus cells (CCs), human CCs were cultured in vitro, and the UCP2 was inhibited by treatment with Genipin, a special UCP inhibitor, or by RNA interference targeting UCP2. No significant differences in adenosine triphosphate levels and the ratio of ADP/ATP were observed after UCP2 inhibition. UCP2 inhibition caused a significant increase in cellular oxidative damage, which was reflected in alterations to several key parameters, including reactive oxygen species (ROS) and lipid peroxidation levels and the ratio of reduced GSH to GSSG. UCP2 blocking resulted in an obvious increase in active Caspase-3, accompanied by the decline of proactive Caspase-3 and a significant increase in the LC3-II/LC3-I ratio, suggesting that UCP2 inhibition triggered cellular apoptosis and autophagy. The mRNA and protein expression of connexin 43 (Cx43), a gap junction channel protein, were significantly reduced after treatment with Genipin or siRNA. The progesterone level in the culture medium was also significantly decreased after UCP2 inhibition. Our data indicated that UCP2 plays highly important roles in mediating ROS production and regulating apoptosis and autophagy, as well as maintaining gap junction integrity and progesterone synthesis, which suggests that UCP2 is involved in the regulation of follicle development and early embryo implantation and implies that it might serve as a potential biomarker for oocyte quality and competency.
Collapse
Affiliation(s)
- Hongshan Ge
- Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Taizhou People's Hospital, The Fifth Hospital Affiliated Nantong University, Taizhou, Jiangsu Province, 225300, People's Republic of China; The Second Affiliated Hospital and YuYing Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People's Republic of China.
| | - Fan Zhang
- The Second Affiliated Hospital and YuYing Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People's Republic of China
| | - Ping Duan
- The Second Affiliated Hospital and YuYing Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People's Republic of China
| | - Nan Zhu
- The Second Affiliated Hospital and YuYing Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People's Republic of China
| | - Jiayan Zhang
- The Second Affiliated Hospital and YuYing Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People's Republic of China
| | - Feijun Ye
- Maternal and Child Health Hospital, Zhoushan Hospital Affiliated Wenzhou Medical University, Zhejiang Province, 316100, People's Republic of China
| | - Dan Shan
- The Second Affiliated Hospital and YuYing Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People's Republic of China
| | - Hua Chen
- The Second Affiliated Hospital and YuYing Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People's Republic of China
| | - XiaoSheng Lu
- The Second Affiliated Hospital and YuYing Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People's Republic of China
| | - ChunFang Zhu
- The Second Affiliated Hospital and YuYing Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People's Republic of China
| | - Renshan Ge
- The Second Affiliated Hospital and YuYing Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People's Republic of China
| | - Zhenkun Lin
- The Second Affiliated Hospital and YuYing Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People's Republic of China.
| |
Collapse
|
11
|
Fu W, Nelson D, Yi Z, Xu M, Khraiwesh B, Jijakli K, Chaiboonchoe A, Alzahmi A, Al-Khairy D, Brynjolfsson S, Salehi-Ashtiani K. Bioactive Compounds From Microalgae: Current Development and Prospects. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63929-5.00006-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|