1
|
Najafi A, Asadi E, Benson JD. Comparative effects of a calcium chelator (BAPTA-AM) and melatonin on cryopreservation-induced oxidative stress and damage in ovarian tissue. Sci Rep 2023; 13:22911. [PMID: 38129642 PMCID: PMC10739950 DOI: 10.1038/s41598-023-49892-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Oncology treatments cause infertility, and ovarian tissue cryopreservation and transplantation (OTCT) is the only option for fertility preservation in prepubertal girls with cancer. However, OTCT is associated with massive follicle loss. Here, we aimed to determine the effect of supplementation of slow freezing and vitrification media with BAPTA-AM and melatonin alone and in combination on ovarian tissue viability, reactive oxygen species (ROS) levels, total antioxidant capacity (TAC), and follicular morphology and viability. Our results indicated that BAPTA-AM and melatonin can significantly improve ovarian tissue viability and the TAC/ROS ratio and reduce ROS generation in frozen-thawed ovarian tissues in slow freezing and vitrification procedures. BAPTA-AM was also found to be less effective on TAC compared to melatonin in vitrified ovarian tissue. While supplementation of slow freezing and vitrification media with BAPTA-AM and/or melatonin could increase the percentage of morphologically intact follicles in cryopreserved ovarian tissues, the differences were not significant. In conclusion, supplementation of cryopreservation media with BAPTA-AM or melatonin improved the outcome of ovarian tissue cryopreservation in both vitrification and slow freezing methods. Our data provide some insight into the importance of modulating redox balance and intracellular Ca2+ levels during ovarian tissue cryopreservation to optimize the current cryopreservation methods.
Collapse
Affiliation(s)
- Atefeh Najafi
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Ebrahim Asadi
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - James D Benson
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| |
Collapse
|
2
|
Olver DJ, Heres P, Paredes E, Benson JD. Rational synthesis of total damage during cryoprotectant equilibration: modelling and experimental validation of osmomechanical, temperature, and cytotoxic damage in sea urchin ( Paracentrotus lividus) oocytes. PeerJ 2023; 11:e15539. [PMID: 37671360 PMCID: PMC10476611 DOI: 10.7717/peerj.15539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/21/2023] [Indexed: 09/07/2023] Open
Abstract
Sea urchins (e.g., Paracentrotus lividus) are important for both aquaculture and as model species. Despite their importance, biobanking of urchin oocytes by cryopreservation is currently not possible. Optimized cryoprotectant loading may enable novel vitrification methods and thus successful cryopreservation of oocytes. One method for determining an optimized loading protocol uses membrane characteristics and models of damage, namely osmomechanical damage, temperature damage (e.g., chill injury) and cytotoxicity. Here we present and experimentally evaluate existing and novel models of these damage modalities as a function of time and temperature. In osmomechanical damage experiments, oocytes were exposed for 2 to 30 minutes in hypertonic NaCl or sucrose supplemented seawater or in hypotonic diluted seawater. In temperature damage experiments, oocytes were exposed to 1.7 °C, 10 °C, or 20 °C for 2 to 90 minutes. Cytotoxicity was investigated by exposing oocytes to solutions of Me2SO for 2 to 30 minutes. We identified a time-dependent osmotic damage model, a temperature-dependent damage model, and a temperature and time-dependent cytotoxicity model. We combined these models to estimate total damage during a cryoprotectant loading protocol and determined the optimal loading protocol for any given goal intracellular cryoprotectant concentration. Given our fitted models, we find sea urchin oocytes can only be loaded to 13% Me2SO v/v with about 50% survival. This synthesis of multiple damage modalities is the first of its kind and enables a novel approach to modelling cryoprotectant equilibration survival for cells in general.
Collapse
Affiliation(s)
- Dominic J. Olver
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Pablo Heres
- Departamento de Ecología y Biología Animal, ECOCOST Lab, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Estefania Paredes
- Departamento de Ecología y Biología Animal, ECOCOST Lab, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - James D. Benson
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
3
|
Gutierrez-Castillo E, Diaz FA, Talbot SA, Bondioli KR. Effect of bovine oocyte vitrification with EGTA and post-warming recovery with resveratrol on meiotic spindle, mitochondrial function, reactive oxygen species, and developmental competence. Theriogenology 2023; 196:59-67. [PMID: 36399880 DOI: 10.1016/j.theriogenology.2022.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
The present study aimed to determine the effects of the addition of EGTA to vitrification solutions and a post-warming recovery period supplemented with 1 μM resveratrol on meiotic spindle integrity, mitochondrial activity, ATP content, reactive oxygen species (ROS) levels, and developmental potential of partially denuded, vitrified-warmed bovine oocytes. Results of microtubule distribution and chromosomal arrangement indicated that resveratrol supplementation, irrespective to EGTA addition, reduced the incidence of abnormal meiotic spindles to similar levels of the control group. Mitochondrial membrane potential was similar in all groups, but ATP content was negatively affected by the vitrification-warming procedure and failed to recover after 4 h of post-warming culture. Resveratrol caused the reduction of ROS to lower levels of the control group, and showed the lowest ROS levels when combined with EGTA treatment. Oocytes in all vitrification groups presented lower developmental potential when compared to fresh oocytes. However, oocytes that underwent vitrification supplemented with EGTA and post-warming culture along with resveratrol showed higher developmental competence compared with vitrified-warmed oocytes not supplemented with resveratrol. The results of our study indicate that submitting vitrified-warmed, partially denuded bovine oocytes to a post-warming recovery period supplemented with 1 μM resveratrol improves vitrification outcomes. However, the benefits of EGTA on vitrification and warming of bovine oocytes need to be further investigated.
Collapse
Affiliation(s)
| | - Fabian A Diaz
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA.
| | - Sydney A Talbot
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA.
| | - Kenneth R Bondioli
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA.
| |
Collapse
|
4
|
Souza-Fabjan JMG, Batista RITP, Correia LFL, Paramio MT, Fonseca JF, Freitas VJF, Mermillod P. In vitro production of small ruminant embryos: latest improvements and further research. Reprod Fertil Dev 2021; 33:31-54. [PMID: 38769678 DOI: 10.1071/rd20206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
This review presents the latest advances in and main obstacles to the application of invitro embryo production (IVEP) systems in small ruminants. This biotechnology is an extremely important tool for genetic improvement for livestock and is essential for the establishment of other biotechnologies, such as cloning and transgenesis. At present, the IVEP market is almost non-existent for small ruminants, in contrast with the trends observed in cattle. This is probably related to the lower added value of small ruminants, lower commercial demand and fewer qualified professionals interested in this area. Moreover, there are fewer research groups working on small ruminant IVEP than those working with cattle and pigs. The heterogeneity of oocytes collected from growing follicles in live females or from ovaries collected from abattoirs remains a challenge for IVEP dissemination in goats and sheep. Of note, although the logistics of oocyte collection from live small ruminant females are more complex than in the bovine, in general the IVEP outcomes, in terms of blastocyst production, are similar. We anticipate that after appropriate training and repeatable results, the commercial demand for small ruminant invitro -produced embryos may increase.
Collapse
Affiliation(s)
- Joanna M G Souza-Fabjan
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil; and Corresponding author
| | - Ribrio I T P Batista
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil
| | - Lucas F L Correia
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil
| | - Maria Teresa Paramio
- Departament de Ciencia Animal i dels Aliments, Facultat de Veterinaria, Universitat Autonoma de Barcelona, 08193 Cerdanyola del Valles, Barcelona, Spain
| | - Jeferson F Fonseca
- Embrapa Caprinos e Ovinos, Rodovia MG 133, km 42, Campo Experimental Coronel Pacheco, Coronel Pacheco-MG, CEP 36155-000, Brazil
| | - Vicente J F Freitas
- Laboratório de Fisiologia e Controle da Reprodução, Universidade Estadual do Ceará, Fortaleza-CE, CEP 60714-903, Brazil
| | - Pascal Mermillod
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UMR7247, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| |
Collapse
|
5
|
Bonte D, Thys V, De Sutter P, Boel A, Leybaert L, Heindryckx B. Vitrification negatively affects the Ca 2+-releasing and activation potential of mouse oocytes, but vitrified oocytes are potentially useful for diagnostic purposes. Reprod Biomed Online 2019; 40:13-25. [PMID: 31740224 DOI: 10.1016/j.rbmo.2019.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/13/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
RESEARCH QUESTION To what extent does vitrification affect the Ca2+-releasing and activation potential of mouse oocytes, which are commonly used to determine the oocyte activation potential of human spermatozoa? DESIGN The effect of mouse oocyte vitrification on Ca2+ dynamics and developmental competence after oocyte activation was assessed and compared with fresh mouse oocytes. Moreover, the Ca2+ store content of the endoplasmic reticulum was determined at different time points during the vitrification-warming procedure. Finally, the Ca2+ pattern induced by cryoprotectant exposure was determined. RESULTS After human sperm injection into mouse oocytes, Ca2+ dynamics but not fertilization rates were significantly altered by vitrification warming (P < 0.05). Ca2+ dynamics in response to SrCl2 or ionomycin were also altered by oocyte vitrification. In contrast, activation and blastocyst rates after SrCl2 exposure were not affected (P > 0.05), whereas activation rates after ionomycin exposure were significantly lower in vitrified-warmed oocytes (P < 0.05); blastocyst rates were not affected (P > 0.05). Cryoprotectant exposure was associated with a strong drop in endoplasmic reticulum Ca2+ store content. Oocytes rapidly recovered during warming and recovery in Ca2+-containing media; a threshold area under the curve of Ca2+ dynamics to obtain activation rates above 90% was determined. CONCLUSIONS Vitrified-warmed mouse oocytes display reduced Ca2+-releasing potential upon oocyte activation, caused by cryoprotectant exposure. With adapted classification criteria, these oocytes could be used for diagnosing oocyte activation deficiencies in patients. Evaluating the Ca2+-signalling machinery in vitrified-warmed human oocytes is required.
Collapse
Affiliation(s)
- Davina Bonte
- Ghent-Fertility and Stem cell Team (G-FaST), Department of Human Structure and Repair, Ghent University Hospital, C. Heymanslaan 10, Ghent 9000, Belgium.
| | - Vanessa Thys
- Ghent-Fertility and Stem cell Team (G-FaST), Department of Human Structure and Repair, Ghent University Hospital, C. Heymanslaan 10, Ghent 9000, Belgium
| | - Petra De Sutter
- Ghent-Fertility and Stem cell Team (G-FaST), Department of Human Structure and Repair, Ghent University Hospital, C. Heymanslaan 10, Ghent 9000, Belgium
| | - Annekatrien Boel
- Ghent-Fertility and Stem cell Team (G-FaST), Department of Human Structure and Repair, Ghent University Hospital, C. Heymanslaan 10, Ghent 9000, Belgium
| | - Luc Leybaert
- Physiology group, Department of Basic and Applied Medical Sciences, Ghent University, C. Heymanslaagn 10, GhentGhent 9000, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem cell Team (G-FaST), Department of Human Structure and Repair, Ghent University Hospital, C. Heymanslaan 10, Ghent 9000, Belgium
| |
Collapse
|