1
|
Cooling of pejerrey Odontesthes bonariensis (Teleostei, Atherinidae) embryos at sub-zero temperatures. Theriogenology 2020; 149:123-130. [PMID: 32259749 DOI: 10.1016/j.theriogenology.2020.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 11/23/2022]
Abstract
Pejerrey fish (Odontesthes bonariensis) is a seasonal multiple spawner with great economic importance and an adequate species for Aquaculture. For these reasons, it is necessary to apply biotechnologies to optimize its reproduction in captivity. In this context, the aim of this work was to develop a cooling protocol for pejerrey embryos at sub-zero temperatures. Two cryoprotective solutions (CSs: S1 and S2), two cooling curves (a fast and a slow one) and two storage temperatures (-14 and -20 °C) were evaluated for 1 h. High percentages of embryo survival (80-100%) were obtained in all cases. In particular, for cooling at -14 °C, the most suitable protocol was the slow temperature decrease in combination with S1 (2.5 M methanol, 1.4 M Me2SO, 0.3 M sucrose, and 0.08 M NaCl). The hatching rate (86.67 ± 11.55%) and the larval survival observed did not differ from those of the control group, and about 30% of normal-looking larvae were obtained. Besides, the slow cooling was also the best way to reach -20 °C, obtaining a hatching rate of around 60%. However, all the larvae had different kind of malformations. Finally, in order to improve the results obtained at -20 °C, the CSs were incorporated into the embryos by microinjection. In this case, it was observed that the most convenient combination was the microinjection of S2 (same composition as S1 but without Me2SO) in the perivitelline space followed by rapid cooling. Although the hatching rate was not improved (67.93 ± 8.31%), the microinjection allowed to obtain at least 4.5% normal-looking larvae. These results showed that the cooling of pejerrey embryos at zub-zero temperatures was feasible. Moreover, the microinjection of cryoprotectants within the pejerrey O.bonariensis embryos was employed for the first time in this species.
Collapse
|
2
|
Zhang J, Tian Y, Li Z, Wu Y, Li Z, Cheng M, Wang L, Ma W, Zhai J. Optimization of vitrification factors for embryo cryopreservation of kelp grouper (Epinephelus moara). Theriogenology 2019; 142:390-399. [PMID: 31708193 DOI: 10.1016/j.theriogenology.2019.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 11/19/2022]
Abstract
Cryopreservation of marine fish embryos causes to severe cryogenic damage, and to date, adults have not been reared from embryos that were cryopreserved. Here, we optimized vitrification factors to improve the survival and hatching rate of kelp grouper (Epinephelus moara) embryos after cryopreservation. We screened the effects of 11 vitrification solution concentrations (25-50%) on the survival rate of embryos at four developmental stages (16S, 18S, 22S, TB). We investigated the effects of different equilibration time (25-45min) on the survival rate and the influence of vitrification solutions on embryonic volume. In addition, we tested the effects of treating embryos at five different developmental stages (4-6S, 16S, 22S, TB, HB) with different vitrification solutions (35% PMG3S and 35% PMG3T), prechilling temperature (-5 °C and 4 °C) and prechilling time. In total, 9855 embryos were cryopreserved at 10 developmental stages, from optic capsule stage to pre-hatch stage. We found that kelp grouper embryos performed best at equilibration time of 30 min. Embryos at the tail-bud stage exhibited greater tolerance to vitrification than other stages. Vitrification solutions that contained sucrose showed better survival rates compared to embryos treated with vitrification solutions containing trehalose. Pre-chilling treatment improved viability before freezing, but did not improve viability after freezing. In the most optimal condition we identified in this study, the average survival, normal development and malformation rates of cryopreserved embryos were 6.32%, 2.36% and 3.49%, and 39.85% of the surviving embryos that were cryopreserved hatched. The hatched larvae gradually died at day 12 of cultivation, where the longest surviving individuals lived for 16 days. This study provides valuable data for improving survival and hatching rate of cryopreserved grouper embryos, and provides references for further exploring techniques in fish embryo cryopreservation.
Collapse
Affiliation(s)
- Jingjing Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China
| | - Yongsheng Tian
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| | - Zhentong Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China
| | - Yuping Wu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Ziqi Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China
| | - Meiling Cheng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Linna Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| | - Wenhui Ma
- Ming Bo Aquatic Co. Ltd., Laizhou, 261400, China
| | - Jieming Zhai
- Ming Bo Aquatic Co. Ltd., Laizhou, 261400, China
| |
Collapse
|