1
|
Zhang D, Fang X, Xia W, Sun Q, Zhang X, Qi Y, Yu Y, Zhou Z, Du D, Tao C, Wang Z, Li J. Rutin enhances mitochondrial function and improves the developmental potential of vitrified ovine GV-stage oocyte. Theriogenology 2024; 229:214-224. [PMID: 39217650 DOI: 10.1016/j.theriogenology.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/25/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Vitrification of oocyte has become an important component of assisted reproductive technology and has important implications for animal reproduction and the preservation of biodiversity. However, vitrification adversely affects mitochondrial function and oocyte developmental potential, mainly because of oxidative damage. Rutin is a highly effective antioxidant, but no information is available to the effect of rutin on the mitochondrial function and development in vitrified oocytes. Therefore, we studied the effects of rutin supplementation of vitrification solution on mitochondrial function and developmental competence of ovine germinal vesicle (GV) stage oocytes post vitrification. The results showed that supplementation of vitrification solution with 0.6 mM rutin significantly increased the cleavage rate (71.6 % vs. 59.3 %) and blastocyst rate (18.9 % vs. 6.8 %) compared to GV-stage oocytes in the vitrified group. Then, we analyzed the reactive oxygen species (ROS), glutathione (GSH), mitochondrial activity and membrane potential (ΔΨm), endoplasmic reticulum (ER) Ca2+, and annexin V (AV) of vitrified sheep GV-stage oocytes. Vitrified sheep oocytes exhibited increased levels of ROS and Ca2+, higher rate of AV-positive oocytes, and decreased mitochondrial activity, GSH and ΔΨm levels. However, rutin supplementation in vitrification solution decreased the levels of ROS, Ca2+ and AV-positive oocytes rate, and increased the GSH and ΔΨm levels in vitrified oocytes. Results revealed that rutin restored mitochondrial function, regulated Ca2+ homeostasis and decreased apoptosis potentially caused by mitophagy in oocytes. To understand the mechanism of rutin functions in vitrified GV-stage oocytes in sheep, we analyzed the transcriptome and found that rutin mediated oocytes development and mitochondrial function, mainly by affecting oxidative phosphorylation and the mitophagy pathways. In conclusion, supplementing with 0.6 mM rutin in vitrification solution significantly enhanced developmental potential through improving mitochondrial function and decreased apoptosis potentially caused by mitophagy after vitrification of ovine GV-stage oocytes.
Collapse
Affiliation(s)
- Di Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Xiaohuan Fang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Wei Xia
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China; Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding, 071000, PR China
| | - Qingyi Sun
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Xinbo Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Yatian Qi
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Yang Yu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Zhenmin Zhou
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Dongyan Du
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Chenyu Tao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China
| | - Zhigang Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China; Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding, 071000, PR China
| | - Junjie Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, PR China; Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding, 071000, PR China.
| |
Collapse
|
2
|
Somfai T. Vitrification of immature oocytes in pigs. Anim Sci J 2024; 95:e13943. [PMID: 38578008 DOI: 10.1111/asj.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
Cryopreservation of oocytes is an important technology for the in vitro gene banking of female germplasm. Although slow freezing is not feasible, porcine oocytes survive vitrification at high rates. Cryopreservation at the germinal vesicle stage appears to be more advantageous than that at the metaphase-II stage. Several factors are considered to affect the success of vitrification and subsequent utilization of immature porcine oocytes such as the device, the protocols for cryoprotectant application, warming, and the post-warming culture. Although live piglets could be obtained from vitrified immature oocytes, their competence to develop to the blastocyst stage is still reduced compared to their non-vitrified counterparts, indicating that there is room for further improvement. Vitrified oocytes suffer various types of damage and alteration which may reduce their developmental ability. Some of these can recover to some extent during subsequent culture, such as the damage of the cytoskeleton and mitochondria. Others such as premature nuclear progression, DNA damage and epigenetic alterations will require further research to be clarified and addressed. To date, the practical application of oocyte vitrification in pigs has been confined to the gene banking of a few native breeds.
Collapse
Affiliation(s)
- Tamás Somfai
- Animal Model Development Group, Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
3
|
Bai J, Li J, Wang L, Hao S, Guo Y, Liu Y, Zhang Z, Li H, Sun WQ, Shi G, Wan P, Fu X. Effect of Antioxidant Procyanidin B2 (PCB2) on Ovine Oocyte Developmental Potential in Response to in Vitro Maturation (IVM) and Vitrification Stress. CRYOLETTERS 2023. [DOI: 10.54680/fr23210110412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
BACKGROUND: It was demonstrated that external stress, such as in vitro maturation (IVM) and vitrification process can induce significantly reduced development capacity in oocytes. Previous studies indicated that antioxidants play a pivotal part in the acquisition of adaptation
in changed conditions. At present, the role of the natural potent antioxidant PCB2 in response to IVM and vitrification during ovine oocyte manipulation has not been explored. OBJECTIVE: To investigate whether PCB2 treatment could improve the developmental potential of ovine oocytes
under IVM and vitrification stimuli. MATERIALS AND METHODS: The experiment was divided into two parts. Firstly, the effect of PCB2 on the development of oocytes during IVM was evaluated. Unsupplem ented and 5 μg/mL PCB2 -supplemented in the IVM solution were considered as control
and experimental groups (C + 5 μg/mL PCB2). The polar body extrusion (PBE) rate, mitochondrial membrane potential (MMP), ATP, reactive oxygen species (ROS) levels and early apoptosis of oocytes were measured after IVM. Secondly, we further determine whether PCB2 could improve oocyte quality
under vitrification stress. The survival rate, PBE rate and early apoptosis of oocytes were compared between fresh group, vitrified group and 5 μg/mL PCB2 -supplemented in the IVM solution after vitrification (V + 5μg/mL PCB2). RESULTS: Compared to the control group, adding PCB2
significantly increased PBE rate (79.4% vs. 62.8%, P < 0.01) and MMP level (1.9 ± 0.08 vs. 1.3 ± 0.04, P < 0.01), and decreased ROS level (47.1 ± 6.3 vs. 145.3 ± 8.9, P < 0.01). However, there was no significant difference
in ATP content and early apoptosis. Compared to the fresh group, vitrification significantly reduced oocytes viability (43.0% vs. 90.8%, P < 0.01) as well as PBE rate (24.2% vs. 60.6%, P < 0.05). However, 5 μg/mL PCB2-supplemention during maturation had
no effect on survival, PBE or early apoptosis in vitrified oocytes. CONCLUSION: PCB2 could effectively antagonise the oxidative stress during IVM and promote oocyte development.
Collapse
Affiliation(s)
- Jiachen Bai
- Institute of Biothermal Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang 050031, China
| | - Longfei Wang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shaopeng Hao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Yanhua Guo
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Yucheng Liu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Zhenliang Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Houru Li
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Wendell Q. Sun
- Institute of Biothermal Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guoqing Shi
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Pengcheng Wan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Colombo M, Alkali IM, Luvoni GC. Microenvironment factors promoting the quality of vitrified cat oocytes. Theriogenology 2023; 196:275-283. [PMID: 36442286 DOI: 10.1016/j.theriogenology.2022.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
In oocyte cryopreservation programs, vitrification has overthrown conventional slow freezing both in veterinary and human medicine. In animals, its feasibility in field conditions makes it the preferred technique for the safeguard of genetic resources from zoo or wild animals, including threatened felids, for which the domestic cat is an excellent model. However, many cellular injuries, such as cytoskeleton, mitochondria and meiotic spindle alterations, DNA damage, zona pellucida hardening and cumulus cell loss, might occur following vitrification. After warming, although the exact mechanisms are still unclear, degeneration is a frequent outcome for cat vitrified oocytes. For immature (germinal vesicle) gametes, in vitro maturation after warming is a challenge, and cleavage after fertilization barely reaches 15-30%, while for mature (metaphase II) cryopreserved gametes it can get to 30-50%. Anyway, the progression to late embryos stages is often impaired, and improvements are needed. Standard cryopreservation protocol and the use of conventional in vitro culture systems after warming may not be enough for vitrified oocytes to recover and demonstrate their full developmental potential. Physical or chemical factors applied to oocytes undergoing vitrification, as an enrichment to the vitrification step, or to the culture microenvironment, could create more favorable conditions and promote vitrified oocyte survival and development. From the use of three-dimensional culture systems to the regulation of metabolic activities and cellular pathways, this review aims to explore all the possibilities employed so far, including the studies performed by our own lab, and the future perspectives, to present the most effective strategies for cat oocyte vitrification and the best time for their application (i.e., before, during, or after vitrification-warming).
Collapse
Affiliation(s)
- Martina Colombo
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università degli Studi di Milano, 26900, Lodi, Italy.
| | - Isa Mohammed Alkali
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università degli Studi di Milano, 26900, Lodi, Italy.
| | - Gaia Cecilia Luvoni
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università degli Studi di Milano, 26900, Lodi, Italy.
| |
Collapse
|
5
|
Xu X, Hao T, Komba E, Yang B, Hao H, Du W, Zhu H, Zhang H, Zhao X. Improvement of Fertilization Capacity and Developmental Ability of Vitrified Bovine Oocytes by JUNO mRNA Microinjection and Cholesterol-Loaded Methyl-β-Cyclodextrin Treatment. Int J Mol Sci 2022; 24:ijms24010590. [PMID: 36614032 PMCID: PMC9820539 DOI: 10.3390/ijms24010590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/31/2022] Open
Abstract
Vitrification of oocytes is crucial for embryo biotechnologies, germplasm cryopreservation of endangered and excellent female animals, and the fertility of humans. However, vitrification significantly impairs the fertilization ability of oocytes, which significantly limits its widely used application. JUNO protein, a receptor for Izumo1, is involved in sperm-oocyte fusion and is an indispensable protein for mammalian fertilization, and its abundance is susceptible to vitrification. However, it is still unclear how vitrification reduces the fertilization capacity of bovine oocytes by affecting JUNO protein. This study was designed to investigate the effect of vitrification on the abundance and post-translational modifications of JUNO protein in bovine oocytes. Our results showed that vitrification did not alter the amino acid sequence of JUNO protein in bovine oocytes. Furthermore, the liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis results showed that vitrification significantly reduced the number and changed the location of disulfide bonds, and increased the number of both phosphorylation and glycosylation sites of JUNO protein in bovine oocytes. Finally, the fertilization capacity and development ability of vitrified oocytes treated with 200 pg JUNO mRNA microinjection and cholesterol-loaded methyl-β-cyclodextrin (CLC/MβCD) were similar to those of fresh oocytes. In conclusion, our results showed that vitrification of bovine oocytes did not alter the protein sequence of JUNO, but induced post-translational modifications and changed protein abundance. Moreover, the fertilization and development ability of vitrified bovine oocytes were improved by the combination treatment of JUNO mRNA microinjection and CLC/MβCD.
Collapse
|
6
|
Arias A, Quiroz A, Santander N, Morselli E, Busso D. Implications of High-Density Cholesterol Metabolism for Oocyte Biology and Female Fertility. Front Cell Dev Biol 2022; 10:941539. [PMID: 36187480 PMCID: PMC9518216 DOI: 10.3389/fcell.2022.941539] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022] Open
Abstract
Cholesterol is an essential component of animal cells. Different regulatory mechanisms converge to maintain adequate levels of this lipid because both its deficiency and excess are unfavorable. Low cell cholesterol content promotes its synthesis and uptake from circulating lipoproteins. In contrast, its excess induces the efflux to high-density lipoproteins (HDL) and their transport to the liver for excretion, a process known as reverse cholesterol transport. Different studies suggest that an abnormal HDL metabolism hinders female fertility. HDL are the only lipoproteins detected in substantial amounts in follicular fluid (FF), and their size and composition correlate with embryo quality. Oocytes obtain cholesterol from cumulus cells via gap junctions because they cannot synthesize cholesterol de novo and lack HDL receptors. Recent evidence has supported the possibility that FF HDL play a major role in taking up excess unesterified cholesterol (UC) from the oocyte. Indeed, genetically modified mouse models with disruptions in reverse cholesterol transport, some of which show excessive circulating UC levels, exhibit female infertility. Cholesterol accumulation can affect the egg´s viability, as reported in other cell types, and activate the plasma membrane structure and activity of membrane proteins. Indeed, in mice deficient for the HDL receptor Scavenger Class B Type I (SR-B1), excess circulating HDL cholesterol and UC accumulation in oocytes impairs meiosis arrest and hinders the developmental capacity of the egg. In other cells, the addition of cholesterol activates calcium channels and dysregulates cell death/survival signaling pathways, suggesting that these mechanisms may link altered HDL cholesterol metabolism and infertility. Although cholesterol, and lipids in general, are usually not evaluated in infertile patients, one study reported high circulating UC levels in women showing longer time to pregnancy as an outcome of fertility. Based on the evidence described above, we propose the existence of a well-regulated and largely unexplored system of cholesterol homeostasis controlling traffic between FF HDL and oocytes, with significant implications for female fertility.
Collapse
Affiliation(s)
- Andreina Arias
- Laboratory of Nutrition, Metabolism and Reproduction, Research and Innovation Center, Program of Reproductive Biology, Universidad de Los Andes, Santiago, Chile
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alonso Quiroz
- Laboratory of Nutrition, Metabolism and Reproduction, Research and Innovation Center, Program of Reproductive Biology, Universidad de Los Andes, Santiago, Chile
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Santander
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua, Chile
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Dolores Busso
- Laboratory of Nutrition, Metabolism and Reproduction, Research and Innovation Center, Program of Reproductive Biology, Universidad de Los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- *Correspondence: Dolores Busso,
| |
Collapse
|
7
|
Fu X, Liu X, Li J, Zhang M, Jiang J, Chen Q, Li M, Gao S, Ma J. An Eight Year Experience of Autologous Oocyte Vitrification for Infertile Patients Owing to Unavailability of Sperm on Oocyte Retrieval Day. Front Med (Lausanne) 2021; 8:663287. [PMID: 34765611 PMCID: PMC8575774 DOI: 10.3389/fmed.2021.663287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The objective of this study was to provide a descriptive analysis of the clinical outcomes achieved in oocyte vitrification in cases where sperm was unavailable on oocyte retrieval day, and to identify predictors of oocyte survival. Methods: This retrospective cohort study used data from a university-affiliated reproductive medical center. There were 321 cycles in which some of, or all oocytes were vitrified owing to the unavailability of sperm between March 2009 and October 2017. A descriptive analysis of the clinical outcomes including both fresh embryo transfers and cryopreserved embryo transfers was provided. The ability of an individual parameter to forecast oocyte survival per thawing cycle was assessed by binary logistic regression analysis. The cumulative probability of live birth (CPLB) was estimated by using the Kaplan-Meier method according to the total number of oocytes thawed in consecutive procedures. Results: The average survival rate was 83.13%. High-quality embryo rate and blastocyst rate decreased significantly decreased significantly in vitrification oocyte group compared to fresh control oocytes. The comparison of sibling oocytes in part-oocyte-vitrified cycles shows fewer high-quality embryos developed in the vitrified group. The live birth rate per warmed-oocyte was 4.3%. Reasons for lack of sperm availability on oocyte retrieval day and serum cholesterol levels were found to be associated with oocyte survival rate in the present study. Kaplan-Meier analysis showed no significant difference in CPLB between patients ≤35 vs. >35 years. Conclusions: Oocyte vitrification is an indispensable and effective alternative when sperm are not available on oocyte retrieval day. The present study provided evidence that oocytes from infertile couples were more likely to suffer oocyte/embryo vitrification injury. Clinicians need to take this into account when advising patients in similar situations. Further studies will be necessary to clarify the correlation between serum metabolism parameters and human oocyte survival after vitrification.
Collapse
Affiliation(s)
- Xiao Fu
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Center for Reproductive Medicine, Shandong University, Jinan, China.,National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Xiaojie Liu
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Center for Reproductive Medicine, Shandong University, Jinan, China.,National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Jing Li
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Center for Reproductive Medicine, Shandong University, Jinan, China.,National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Meng Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Center for Reproductive Medicine, Shandong University, Jinan, China.,National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Jingjing Jiang
- Center for Reproductive Medicine, Shandong University, Jinan, China.,National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Qianqian Chen
- Center for Reproductive Medicine, Shandong University, Jinan, China.,National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Mei Li
- Center for Reproductive Medicine, Shandong University, Jinan, China.,National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Shanshan Gao
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Center for Reproductive Medicine, Shandong University, Jinan, China.,National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Jinlong Ma
- Center for Reproductive Medicine, Shandong University, Jinan, China.,National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| |
Collapse
|