1
|
Žukauskaitė D, Zentelytė A, Girniūtė E, Navakauskienė R. The outcome of tissue cryopreservation on the cellular, molecular and epigenetic characteristics of endometrial tissue and stromal cells. Reprod Biomed Online 2024; 49:103990. [PMID: 38824763 DOI: 10.1016/j.rbmo.2024.103990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 06/04/2024]
Abstract
RESEARCH QUESTION What impact does the cryopreservation of endometrial tissue have on cell characteristics and molecular and epigenetic profile changes in endometrial tissue and stromal cells? DESIGN Cellular properties, such as proliferation efficiency, surface marker expression and the differentiation potency of endometrial stromal cells (ESC) isolated from fresh (Native) and cryopreserved (Cryo) tissue were compared. Moreover, changes in the expression of genes associated with pluripotency, endometrial function and epigenetic regulation and microRNA (miRNA, miR) were assessed, as were levels of DNA methylation and histone modifications. RESULTS Native and Cryo cells exhibit very similar profiles including cell surface marker expression, differentiation potency and histone modifications, except for a decrease in proliferative potency and cell surface marker SUSD2 expression in Cryo cells. It was demonstrated that endometrial tissue cryopreservation led to an up-regulated expression of genes associated with pluripotency (NANOG, OCT4 [also known as POU5F1]). This confirms that despite being recovered from cryopreserved differentiated tissue, cells retained their stemness properties. In addition, alterations in DNA methyltransferase (DNMT1, DNMT3A, DNMT3B) gene regulation were observed, along with a down-regulation of hsa-miR145-5p in Cryo ESC. CONCLUSIONS These findings contribute to a deeper understanding of the complex effects of endometrial tissue cryopreservation, providing insights for both medical and basic research applications. Since different tissues possess unique characteristics, it is essential to select the most suitable cryopreservation method for each tissue individually. Furthermore, the study findings indicate the potential utility of slow-cooling cryopreservation for both normal and pathological endometrial tissue samples, with the purpose of isolating stromal cell cultures.
Collapse
Affiliation(s)
- Deimantė Žukauskaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania..
| | - Aistė Zentelytė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Erika Girniūtė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rūta Navakauskienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
2
|
Thompson RE, Meyers MA, Palmer J, Veeramachaneni DNR, Magee C, de Mestre AM, Antczak DF, Hollinshead FK. Production of Mare Chorionic Girdle Organoids That Secrete Equine Chorionic Gonadotropin. Int J Mol Sci 2023; 24:ijms24119538. [PMID: 37298490 DOI: 10.3390/ijms24119538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The equine chorionic girdle is comprised of specialized invasive trophoblast cells that begin formation approximately 25 days after ovulation (day 0) and invade the endometrium to become endometrial cups. These specialized trophoblast cells transition from uninucleate to differentiated binucleate trophoblast cells that secrete the glycoprotein hormone equine chorionic gonadotropin (eCG; formerly known as pregnant mare serum gonadotropin or PMSG). This eCG has LH-like activity in the horse but variable LH- and FSH-like activity in other species and has been utilized for these properties both in vivo and in vitro. To produce eCG commercially, large volumes of whole blood must be collected from pregnant mares, which negatively impacts equine welfare due to repeated blood collections and the birth of an unwanted foal. Attempts to produce eCG in vitro using long-term culture of chorionic girdle explants have not been successful beyond 180 days, with peak eCG production at 30 days of culture. Organoids are three-dimensional cell clusters that self-organize and can remain genetically and phenotypically stable throughout long-term culture (i.e., months). Human trophoblast organoids have been reported to successfully produce human chorionic gonadotropin (hCG) and proliferate long-term (>1 year). The objective of this study was to evaluate whether organoids derived from equine chorionic girdle maintain physiological functionality. Here we show generation of chorionic girdle organoids for the first time and demonstrate in vitro production of eCG for up to 6 weeks in culture. Therefore, equine chorionic girdle organoids provide a physiologically representative 3D in vitro model for chorionic girdle development of early equine pregnancy.
Collapse
Affiliation(s)
- Riley E Thompson
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| | - Mindy A Meyers
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| | - Jennifer Palmer
- Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO 80523, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - D N Rao Veeramachaneni
- Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO 80523, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Christianne Magee
- Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO 80523, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Amanda M de Mestre
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Douglas F Antczak
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Fiona K Hollinshead
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
3
|
Generation and cryopreservation of feline oviductal organoids. Theriogenology 2023; 196:167-173. [PMID: 36423511 DOI: 10.1016/j.theriogenology.2022.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
Next-generation in vitro culture model systems are needed to study the reproductive pathologies that affect domestic animals. These 3D culture models more closely mimic normal physiological function to allow a greater understanding of reproductive pathology and to trial therapeutics without the welfare concerns and the increased time and cost associated with live animal research. Recent advances with in vitro cell culture systems utilizing human and laboratory animal tissues have been reported, but implementation of these technologies in veterinary species has been slower. Organoids are a physiologically representative 3D cell culture system that can be maintained long-term. By combining organoid culture with cryopreservation, a long-term, experimental model can be available for year-round application, thus bypassing seasonality and reproductive tract availability restrictions. Here we report the generation and cryopreservation of feline oviductal organoids for the first time. Optimal culture medium for the generation of feline oviductal organoids was established, and organoids were successfully cryopreserved using three different freezing media with organoids from each treatment demonstrating comparable viability, growth rate, and protein expression after thawing and culture. Feline oviductal organoids may facilitate an in vivo-like environment that, in conjunction with co-culture for in vitro maturation and in vitro fertilization, may positively influence in vitro gamete and embryo development, embryo quality, and pregnancy rates after embryo transfer in domestic and nondomestic felids. Furthermore, readily available cryopreserved feline oviductal organoids will facilitate this co-culture, which is of particular importance to endangered felid breeding programs where tissue and gamete samples are often opportunistically obtained with little or no notice.
Collapse
|
4
|
Thompson RE, Meyers MA, Veeramachaneni DNR, Pukazhenthi BS, Hollinshead FK. Equine Oviductal Organoid Generation and Cryopreservation. Methods Protoc 2022; 5:mps5030051. [PMID: 35736552 PMCID: PMC9230449 DOI: 10.3390/mps5030051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Organoids are a type of three-dimensional (3D) cell culture that more closely mimic the in vivo environment and can be maintained in the long term. To date, oviductal organoids have only been reported in laboratory mice, women, and cattle. Equine oviductal organoids were generated and cultured for 42 days (including 3 passages and freeze-thawing at passage 1). Consistent with the reports in mouse and human oviductal organoids, the equine oviductal organoids revealed round cell clusters with a central lumen. Developing a 3D model of the mare oviduct may allow for an increased understanding of their normal physiology, including hormonal regulation. These organoids may provide an environment that mimics the in vivo equine oviduct and facilitate improved in vitro embryo production in equids.
Collapse
Affiliation(s)
- Riley E. Thompson
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.A.M.); (F.K.H.)
- Correspondence:
| | - Mindy A. Meyers
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.A.M.); (F.K.H.)
| | | | - Budhan S. Pukazhenthi
- Center for Species Survival, Smithsonian National Zoo and Conservation Biology Institute, Front Royal, VA 22630, USA;
| | - Fiona K. Hollinshead
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.A.M.); (F.K.H.)
| |
Collapse
|
5
|
Thompson RE, Bouma GJ, Hollinshead FK. The Roles of Extracellular Vesicles and Organoid Models in Female Reproductive Physiology. Int J Mol Sci 2022; 23:ijms23063186. [PMID: 35328607 PMCID: PMC8954697 DOI: 10.3390/ijms23063186] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023] Open
Abstract
Culture model systems that can recapitulate the anatomy and physiology of reproductive organs, such as three-dimensional (3D) organoid culture systems, limit the cost and welfare concerns associated with a research animal colony and provide alternative approaches to study specific processes in humans and animals. These 3D models facilitate a greater understanding of the physiological role of individual cell types and their interactions than can be accomplished with traditional monolayer culture systems. Furthermore, 3D culture systems allow for the examination of specific cellular, molecular, or hormonal interactions, without confounding factors that occur with in vivo models, and provide a powerful approach to study physiological and pathological reproductive conditions. The goal of this paper is to review and compare organoid culture systems to other in vitro cell culture models, currently used to study female reproductive physiology, with an emphasis on the role of extracellular vesicle interactions. The critical role of extracellular vesicles for intercellular communication in physiological processes, including reproduction, has been well documented, and an overview of the roles of extracellular vesicles in organoid systems will be provided. Finally, we will propose future directions for understanding the role of extracellular vesicles in normal and pathological conditions of reproductive organs, utilizing 3D organoid culture systems.
Collapse
|
6
|
Thompson RE, Meyers MA, Pukazhenthi BS, Hollinshead FK. Evaluation of growth, viability, and structural integrity of equine endometrial organoids following cryopreservation. Cryobiology 2021; 104:56-62. [PMID: 34788682 DOI: 10.1016/j.cryobiol.2021.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 12/18/2022]
Abstract
Reproductive diseases in mares are a significant cause of subfertility and profound economic loss in the equine industry. Utilizing a 3D in vitro cell culture system that recapitulates the in vivo physiology will reduce time, cost, and welfare concerns associated with in vivo reproductive research in mares. If this 3D model is combined with effective cryopreservation, reproductive research on mares can occur year-round, which is not currently possible in this seasonal species. Endometrial organoids, 3D in vitro cell clusters that exhibit in vivo uterine physiology, have been established in mice, women, and mares. Here we report the first comprehensive assessment of cryopreservation of endometrial organoids in the domestic mare. Organoid growth rate was not affected by the type of freezing media. However, growth rate varied among non-cryopreserved controls, organoids cryopreserved at passage 0 (P0), and organoids cryopreserved at passage 3 (P3). Additionally, there was no difference in organoid viability among freezing media or freezing timepoint (passages). Furthermore, fresh and frozen-thawed organoids displayed positive immunohistochemical staining for ZO-1, which is a marker for intercellular tight junctions, and for periodic acid-Schiff staining as marker for organoid function through mucin production. Results demonstrate that equine endometrial organoids can be cryopreserved with 10% dimethyl sulfoxide with minimal detrimental effects while maintaining intercellular tight junctions (ZO-1) and secretory function. Availability of cryopreserved endometrial organoids may permit expanded research on uterine pathologies that negatively affect mare fertility and improve efficiency, reduce cost, and minimize animal welfare concerns associated with in vivo research in the domestic mare.
Collapse
Affiliation(s)
- Riley E Thompson
- Colorado State University, Department of Clinical Sciences, 1601 Campus Delivery, Fort Collins, CO, 80523, USA.
| | - Melinda A Meyers
- Colorado State University, Department of Clinical Sciences, 1601 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Budhan S Pukazhenthi
- Smithsonian Conservation Biology Institute, Center for Species Survival, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - Fiona K Hollinshead
- Colorado State University, Department of Clinical Sciences, 1601 Campus Delivery, Fort Collins, CO, 80523, USA
| |
Collapse
|
7
|
Thompson RE, Premanandan C, Pukazhenthi BS, Whitlock BK. A review of in vivo and in vitro studies of the mare endometrium. Anim Reprod Sci 2020; 222:106605. [PMID: 32987223 DOI: 10.1016/j.anireprosci.2020.106605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 11/29/2022]
Abstract
The inner layer of the uterus, the endometrium, is responsible and necessary for many reproductive functions. Normal reproductive cyclicity, maternal recognition of pregnancy, maternal interaction with the embryo, and interaction of the reproductive tract with pathogens are dependent on the endometrium. Although most studies have been conducted in vivo using live animals, recent advances in in vitro approaches could facilitate future research in a laboratory setting with minimal effect on animals. Many reproductive studies have been performed in vivo and in vitro in equids, but new in vitro methods to study the endometrium of mares remain unexplored. In this review, there is a description of the normal anatomy and physiology of the mare endometrium in vivo, in vitro endometrial cell culture techniques that have been previously described for the mare, and opportunities for future reproductive research using in vitro methods.
Collapse
Affiliation(s)
- Riley E Thompson
- Department of Large Animal Clinical Sciences, University of Tennessee, Knoxville, TN, USA; Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | | | - Budhan S Pukazhenthi
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA, USA.
| | - Brian K Whitlock
- Department of Large Animal Clinical Sciences, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
8
|
Persian onager (Equus hemionus onager) endometrial explant cryopreservation and in vitro culture. Anim Reprod Sci 2020; 217:106459. [PMID: 32408971 DOI: 10.1016/j.anireprosci.2020.106459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 11/23/2022]
Abstract
Assisted reproduction of endangered equids, such as Persian onagers (Equus hemionus onager), is vital for species conservation. Little is known about Persian onager reproductive functions, including functions of the uterine endometrium. Recently, successful cryopreservation of the domestic mare endometrium was reported, but there is no information on cryo-sensitivity or in vitro culture of endometrial tissues of any non-domestic equid. In the present study, endometrial explants from Persian onagers were cryopreserved and cultured in vitro for 5 days. There was no difference between endometrial explants when 10% and 20% dimethyl sulfoxide (DMSO) was used for cryopreservation. Cell viability and structural integrity were comparable to fresh tissue. Abundance of estrogen receptor-α (ESR1) and progesterone receptor (PGR) mRNA transcript in endometrial explants was less in most treatment groups compared to the fresh tissue control. There was variation in E-cadherin mRNA abundance in endometrial explants among treatment groups with some treatment groups having a lesser abundance compared to the control group. The abundance of Ki67 mRNA transcript of endometrial explants was not different among treatment groups compared to the control group. Results indicate that DMSO is a suitable cryoprotectant for the Persian onager endometrium, and in vitro culture in a liquid-gas interface can maintain Persian onager endometrial explants for as long as 5 days. Findings allow for a greater understanding of reproductive mechanisms in vitro for this endangered species and other domestic equids including donkeys.
Collapse
|