1
|
Ruan Q, Yang S, Hua S, Zhang W, Li D, Yang Y, Wang X, Wang Q, Meng Z. Supplementation of Extender with Melatonin Improves the Motility, Mitochondrial Membrane Potential, and Fertilization Ability of Cryopreserved Brown-Marbled Grouper Sperm. Animals (Basel) 2024; 14:995. [PMID: 38612234 PMCID: PMC11010917 DOI: 10.3390/ani14070995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Sperm cryopreservation is a valuable tool for breeding, conservation, and genetic improvement in aquatic resources, while oxidative damage will cause a decline in sperm quality during this progress. Melatonin (MT), a natural antioxidant hormone, is used as an additive in sperm cryopreservation to reduce cellular damage from oxidative stress. Here, we aimed to investigate the effect of adding MT to the freezing medium in sperm cryopreservation of brown-marbled grouper (Epinephelus fuscoguttatus). Different concentrations of MT (0, 0.1, 0.25, and 0.5 mg/mL) were tested. We evaluated sperm motility, viability, apoptosis, mitochondrial membrane potential (MMP), and fertilization ability to assess the effects of MT supplementation. Our results demonstrated that the addition of MT to the extender improved the post-thaw motility, MMP, and fertilization ability of brown-marbled grouper sperm. The total motility, curvilinear velocity, straight linear velocity, and average path velocity in MT-treated groups (0.1 and 0.25 mg/mL) exhibited significantly higher values than that of the control group. A higher MMP (p < 0.05) was observed in the group treated with 0.25 mg/mL MT, suggesting that supplementation of MT in the extender might be able to protect mitochondrial membrane integrity effectively. Regarding fertilizing ability, 0.25 mg/mL MT yielded a significantly higher hatching rate than the control. An adverse effect was found with the concentration of MT up to 0.5 mg/mL, suggesting the possible toxicity of a high-dose addition. In this study, we optimized the sperm cryopreservation protocol of brown-marbled grouper, which might be valuable for sperm cryopreservation and sample commercialization of groupers and other fish.
Collapse
Affiliation(s)
- Qingxin Ruan
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Q.R.); (S.H.); (W.Z.); (D.L.); (Y.Y.); (X.W.); (Q.W.)
| | - Sen Yang
- College of Food Science and Technology, Guangdong Ocean University (Yangjiang Campus), Yangjiang 529599, China;
| | - Sijie Hua
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Q.R.); (S.H.); (W.Z.); (D.L.); (Y.Y.); (X.W.); (Q.W.)
| | - Weiwei Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Q.R.); (S.H.); (W.Z.); (D.L.); (Y.Y.); (X.W.); (Q.W.)
| | - Duo Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Q.R.); (S.H.); (W.Z.); (D.L.); (Y.Y.); (X.W.); (Q.W.)
| | - Yang Yang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Q.R.); (S.H.); (W.Z.); (D.L.); (Y.Y.); (X.W.); (Q.W.)
| | - Xi Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Q.R.); (S.H.); (W.Z.); (D.L.); (Y.Y.); (X.W.); (Q.W.)
| | - Qinghua Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Q.R.); (S.H.); (W.Z.); (D.L.); (Y.Y.); (X.W.); (Q.W.)
| | - Zining Meng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Q.R.); (S.H.); (W.Z.); (D.L.); (Y.Y.); (X.W.); (Q.W.)
- Southern Laboratory of Ocean Science and Engineering, Zhuhai 519000, China
| |
Collapse
|
2
|
Effect of Methylmercury Exposure on Bioaccumulation and Nonspecific Immune Respsonses in Hybrid Grouper Epinephelus fuscoguttatus × Epinephelus lanceolatus. Animals (Basel) 2022; 12:ani12020147. [PMID: 35049771 PMCID: PMC8772552 DOI: 10.3390/ani12020147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary The head kidney was primary organ that accumulated methylmercury in hybrid grouper. Muscle tissue had lower methylmercury content than the head kidney and liver. Nonspecific immune responses and bioaccumulation of methylmercury were linked to hybrid grouper health. Abstract Mercury (Hg) is a dangerous heavy metal that can accumulate in fish and is harmful when consumed by humans. This study investigated the bioaccumulation of mercury in the form of methylmercury (MeHg) and evaluated nonspecific immune responses such as phagocytic activity and superoxide anion (O2−) production in hybrid grouper (Epinephelus fuscoguttatus × E. lanceolatus). The hybrid grouper leukocytes were incubated with methylmercury chloride (CH3HgCl) at concentrations of 10–10,000 µg/L to determine cell viability, phagocytic activity, and O2− production in vitro. Subsequently, the grouper were exposed daily to CH3HgCl mixed in the experimental diets at concentrations of 0, 1, 5, and 10 mg/kg for 28 days. The bioaccumulation of MeHg in the liver, head kidney, and muscle tissue was measured, and the phagocytic activity and O2− production were evaluated. In vitro results indicated that cell viability was significantly lower than that of the control group at concentrations > 500 µg/L. The phagocytic rate and O2− production at concentrations ˃ 500 and ˃ 200 µg/L, respectively, were significantly lower than those of the control group. The dietary exposure demonstrated that MeHg accumulated more substantially in the liver and head kidney compared with the muscle tissue in the treatment groups. Moreover, the cumulative concentration significantly increased with higher concentrations and more days of exposure. The phagocytic rate and O2− production in the treatment groups were significantly lower than those in the control group from days 2 and 1, respectively. In conclusion, hybrid grouper accumulated significant MeHg in the liver and head kidney compared with the muscle tissue, and higher concentrations and more exposure days resulted in decreased cell viability, phagocytic activity, and O2− production.
Collapse
|
3
|
Zhang W, Tan B, Deng J, Haitao Z. Multiomics analysis of soybean meal induced marine fish enteritis in juvenile pearl gentian grouper, Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂. Sci Rep 2021; 11:23319. [PMID: 34857775 PMCID: PMC8640039 DOI: 10.1038/s41598-021-02278-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 09/20/2021] [Indexed: 01/02/2023] Open
Abstract
As an important protein source, soybean products can cause intestinal inflammation and injury in many animals including human beings, particularly infants and juvenile individuals. Research in this field has been performed for terrestrial animals and fish, but still lacks integrity and systematicness. In this study, the main biological processes in the intestinal tract of marine fish juvenile pearl gentian grouper in the state of soybean meal-induced enteritis (SBMIE) were analyzed. A total of 720 groupers with an approximate initial weight of 12.5 g were randomly divided into three groups: the fish meal (FM) control group, the 20% SBM group (SBM20), and the SBM40 group (n = 4). Three iso-nitrogenous and iso-lipidic diets were prepared and fed to fish for 10 weeks. Each barrel contained a water volume of about 1 m3 in and was exposed to natural light and temperature. Results indicated that the growth and physiology of groupers fed with SBM were significantly negatively affected, with the gene expressions of intestinal structural protein abnormal. 16SrDNA high-throughput sequencing showed that the intestinal microflora played an important role in the pathogenesis of pearl gentian grouper SBMIE, which may activate a variety of pathogen pattern recognition receptors, such as toll-like receptors (TLRs), RIG-I-like receptors, and nod-like receptors. Transcriptome analysis revealed that changes of the SBMIE signaling pathway in pearl gentian groupers were conservative to some extent than that of terrestrial animals and freshwater fish. Moreover, the TLRs-nuclear factor kappa-B signaling pathway becomes activated, which played an important role in SBMIE. Meanwhile, the signal pathways related to nutrient absorption and metabolism were generally inhibited. Metabolomics analysis showed that isoflavones and saponins accounted for a large proportion in the potential biomarkers of pearl gentian grouper SBMIE, and most of the biomarkers had significantly positive or negative correlations with each other; 56 metabolites were exchanged between intestinal tissues and contents, which may play an important role in the development of enteritis, including unsaturated fatty acids, organic acids, amino acids, vitamins, small peptides, and nucleotides, etc. These results provide a basic theoretical reference for solving the intestinal issues of fish SBMIE and research of inflammatory bowel disease in mammals.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, People's Republic of China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524025, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, Guangdong, People's Republic of China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, People's Republic of China.
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524025, Guangdong, People's Republic of China.
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, Guangdong, People's Republic of China.
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China.
| | - Junming Deng
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, People's Republic of China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524025, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, Guangdong, People's Republic of China
| | - Zhang Haitao
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, Guangdong, People's Republic of China
| |
Collapse
|
4
|
Yang S, Fan B, Chen X, Meng Z. Supplementation of the freezing medium with Coenzyme Q10 attenuates oxidative stress and improves function of frozen-thawed giant grouper (Epinephelus lanceolatus) spermatozoa. Theriogenology 2021; 175:77-82. [PMID: 34508969 DOI: 10.1016/j.theriogenology.2021.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
Incorporation of Coenzyme Q10 (CoQ10) to the freezing medium provides advantageous effect for sperm cryopreservation in a variety of animal species, yet which has not been tested in giant grouper (Epinephelus lanceolatus). This research was designed to elucidate if CoQ10 could be used as a potential additive to improve giant grouper sperm quality after cryopreservation. After the process of freezing and thawing, various sperm quality parameters including motility, viability, apoptosis, mitochondrial membrane potential (MMP), intracellular reactive oxygen species (ROS) generation, DNA fragmentation as well as fertilization rate were evaluated with CoQ10 added at concentrations of 0, 25, 50 and 100 μM. Compared to the control group (0 μm), addition of CoQ10 in the medium yielded significantly higher total motility and curvilinear velocity, whereas the progressive motility, straight-line velocity and average path velocity were not differ from each other. An obvious improvement in viability was observed in spermatozoa cryopreserved with 25 and 50 μM CoQ10, while the apoptosis rate in CoQ10 treated groups (25, 50 and 100 μM) exhibited significantly lower values than that of the control. Besides, the production of ROS was significantly decreased with CoQ10 addition groups when compared with the control. In consistent with the improvement in antioxidant defense, CoQ10 supplementation in the medium also enhanced mitochondrial activity and reduced DNA fragmentation. In addition, freezing medium supplemented with CoQ10 also improved the fertilization success, a significantly higher fertilization rate was recorded at the concentration of 50 μM, but this value was not differ from that of 25 μM. Overall, the antioxidant CoQ10 provided an obvious beneficial effect on post-thaw quality of giant grouper spermatozoa. It was concluded that the optimal concentration of CoQ10 is 50 μM in the freezing medium.
Collapse
Affiliation(s)
- Sen Yang
- College of Food Science and Technology, Guangdong Ocean University (Yangjiang Campus), Yangjiang, 529500, China
| | - Bin Fan
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China; Department of Food and Environmental Engineering, Yangjiang Polytechnic, Yangjiang, 529500, China
| | - Xinghan Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China; Department of Food and Environmental Engineering, Yangjiang Polytechnic, Yangjiang, 529500, China
| | - Zining Meng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China; Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, China.
| |
Collapse
|