1
|
Keller MA, Nance ST, Maurer J, Kavitsky V, Babariya SP. The American Rare Donor Program: 25 years supporting rare blood needs. Immunohematology 2024; 40:100-121. [PMID: 39373302 DOI: 10.2478/immunohematology-2024-015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Rare donor programs are critically important for those patients with rare phenotypes who have produced the associated alloantibodies that necessitate the provision of rare blood components. We describe the American Rare Donor Program (ARDP) and its establishment, members, and policies. The specific phenotypes meeting the ARDP criteria for inclusion are described. Data on the number of rare donors registered by year, and the number of requests for rare blood components received and fulfilled over the 25 years of the program (1998-2023) are provided, along with a description of some notable cases and discussion of how the program supports patients with sickle cell disease.
Collapse
Affiliation(s)
- Margaret A Keller
- 1American Rare Donor Program, Biomedical Services, American Red Cross, Philadelphia, PA
| | - Sandra T Nance
- 1American Rare Donor Program, Biomedical Services, American Red Cross, Philadelphia, PA
| | - Joan Maurer
- 1American Rare Donor Program, Biomedical Services, American Red Cross, Philadelphia, PA
| | - Victoria Kavitsky
- 1American Rare Donor Program, Biomedical Services, American Red Cross, Philadelphia, PA
| | - Shraddha P Babariya
- 1American Rare Donor Program, Biomedical Services, American Red Cross, Philadelphia, PA
| |
Collapse
|
2
|
Using Whole Genome Sequencing to Characterize Clinically Significant Blood Groups Among Healthy Older Australians. Blood Adv 2022; 6:4593-4604. [PMID: 35420653 PMCID: PMC9636324 DOI: 10.1182/bloodadvances.2022007505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/29/2022] [Indexed: 12/02/2022] Open
Abstract
There have been no comprehensive studies of a full range of blood group polymorphisms within the Australian population. This problem is compounded by the absence of any databases carrying genomic information on chronically transfused patients and low frequency blood group antigens in Australia. Here, we use RBCeq, a web server–based blood group genotyping software, to identify unique blood group variants among Australians and compare the variation detected vs global data. Whole-genome sequencing data were analyzed for 2796 healthy older Australians from the Medical Genome Reference Bank and compared with data from 1000 Genomes phase 3 (1KGP3) databases comprising 661 African, 347 American, 503 European, 504 East Asian, and 489 South Asian participants. There were 661 rare variants detected in this Australian sample population, including 9 variants that had clinical associations. Notably, we identified 80 variants that were computationally predicted to be novel and deleterious. No clinically significant rare or novel variants were found associated with the genetically complex ABO blood group system. For the Rh blood group system, 2 novel and 15 rare variants were found. Our detailed blood group profiling results provide a starting point for the creation of an Australian blood group variant database.
Collapse
|
3
|
Jadhao S, Hoy W, Lee S, Patel HR, McMorran BJ, Flower RL, Nagaraj SH. The genomic landscape of blood groups in Indigenous Australians in remote communities. Transfusion 2022; 62:1110-1120. [PMID: 35403234 PMCID: PMC9544628 DOI: 10.1111/trf.16873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 11/28/2022]
Abstract
Background Methods and materials Results Conclusion
Collapse
Affiliation(s)
- Sudhir Jadhao
- Centre for Genomics and Personalised Health Queensland University of Technology Brisbane Queensland Australia
- Translational Research Institute Brisbane Queensland Australia
| | - Wendy Hoy
- Faculty of Medicine University of Queensland Brisbane Queensland Australia
| | - Simon Lee
- Centre for Genomics and Personalised Health Queensland University of Technology Brisbane Queensland Australia
- Translational Research Institute Brisbane Queensland Australia
| | - Hardip R. Patel
- National Centre for Indigenous Genomics Australian National University Canberra Australian Capital Territory Australia
| | - Brendan J. McMorran
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, College of Health and Medicine The Australian National University Canberra Australian Capital Territory Australia
| | - Robert L. Flower
- Research and Development Australian Red Cross Lifeblood Red Cell Reference Laboratory Brisbane Queensland Australia
| | - Shivashankar H. Nagaraj
- Centre for Genomics and Personalised Health Queensland University of Technology Brisbane Queensland Australia
- Translational Research Institute Brisbane Queensland Australia
| |
Collapse
|
4
|
Kim TY, Yu H, Phan MTT, Jang JH, Cho D. Application of Blood Group Genotyping by Next-Generation Sequencing in Various Immunohaematology Cases. Transfus Med Hemother 2022; 49:88-96. [PMID: 35611383 PMCID: PMC9082207 DOI: 10.1159/000517565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/31/2021] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) technology has been recently introduced into blood group genotyping; however, there are few studies using NGS-based blood group genotyping in real-world clinical settings. In this study, we applied NGS-based blood group genotyping into various immunohaematology cases encountered in routine clinical practice. METHODS This study included 4 immunohaematology cases: ABO subgroup, ABO chimerism, antibody to a high-frequency antigen (HFA), and anti-CD47 interference. We designed a hybridization capture-based NGS panel targeting 39 blood group-related genes and applied it to the 4 cases. RESULTS NGS analysis revealed a novel intronic variant (NM_020469.3:c.29-10T>G) in a patient with an Ael phenotype and detected a small fraction of ABO*A1.02 (approximately 3-6%) coexisting with the major genotype ABO*B.01/O.01.02 in dizygotic twins. In addition, NGS analysis found a homozygous stop-gain variant (NM_004827.3:c.376C>T, p.Gln126*; ABCG2*01N.01) in a patient with an antibody to an HFA; consequently, this patient's phenotype was predicted as Jr(a-). Lastly, blood group phenotypes predicted by NGS were concordant with those determined by serology in 2 patients treated with anti-CD47 drugs. CONCLUSION NGS-based blood group genotyping can be used for identifying ABO subgroup alleles, low levels of blood group chimerism, and antibodies to HFAs. Furthermore, it can be applied to extended blood group antigen matching for patients treated with anti-CD47 drugs.
Collapse
Affiliation(s)
- Tae Yeul Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - HongBi Yu
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Minh-Trang Thi Phan
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Duck Cho
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
5
|
Jadhao S, Davison CL, Roulis EV, Schoeman EM, Divate M, Haring M, Williams C, Shankar AJ, Lee S, Pecheniuk NM, Irving DO, Hyland CA, Flower RL, Nagaraj SH. RBCeq: A robust and scalable algorithm for accurate genetic blood typing. EBioMedicine 2022; 76:103759. [PMID: 35033986 PMCID: PMC8763639 DOI: 10.1016/j.ebiom.2021.103759] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 12/20/2022] Open
Abstract
Background While blood transfusion is an essential cornerstone of hematological care, patients requiring repetitive transfusion remain at persistent risk of alloimmunization due to the diversity of human blood group polymorphisms. Despite the promise, user friendly methods to accurately identify blood types from next-generation sequencing data are currently lacking. To address this unmet need, we have developed RBCeq, a novel genetic blood typing algorithm to accurately identify 36 blood group systems. Methods RBCeq can predict complex blood groups such as RH, and ABO that require identification of small indels and copy number variants. RBCeq also reports clinically significant, rare, and novel variants with potential clinical relevance that may lead to the identification of novel blood group alleles. Findings The RBCeq algorithm demonstrated 99·07% concordance when validated on 402 samples which included 29 antigens with serology and 9 antigens with SNP-array validation in 14 blood group systems and 59 antigens validation on manual predicted phenotype from variant call files. We have also developed a user-friendly web server that generates detailed blood typing reports with advanced visualization (https://www.rbceq.org/). Interpretation RBCeq will assist blood banks and immunohematology laboratories by overcoming existing methodological limitations like scalability, reproducibility, and accuracy when genotyping and phenotyping in multi-ethnic populations. This Amazon Web Services (AWS) cloud based platform has the potential to reduce pre-transfusion testing time and to increase sample processing throughput, ultimately improving quality of patient care. Funding This work was supported in part by Advance Queensland Research Fellowship, MRFF Genomics Health Futures Mission (76,757), and the Australian Red Cross LifeBlood. The Australian governments fund the Australian Red Cross Lifeblood for the provision of blood, blood products and services to the Australian community.
Collapse
Affiliation(s)
- Sudhir Jadhao
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Candice L Davison
- Australian Red Cross Lifeblood Research and Development, Brisbane, Queensland, Australia
| | - Eileen V Roulis
- Australian Red Cross Lifeblood Research and Development, Brisbane, Queensland, Australia; Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Elizna M Schoeman
- Australian Red Cross Lifeblood Research and Development, Brisbane, Queensland, Australia
| | - Mayur Divate
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Mitchel Haring
- Office of eResearch, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Chris Williams
- Office of eResearch, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Arvind Jaya Shankar
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Simon Lee
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Natalie M Pecheniuk
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - David O Irving
- Research and Development, Australian Red Cross Blood Service, Sydney, New South Wales, Australia
| | - Catherine A Hyland
- Australian Red Cross Lifeblood Research and Development, Brisbane, Queensland, Australia; Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Robert L Flower
- Australian Red Cross Lifeblood Research and Development, Brisbane, Queensland, Australia; Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Shivashankar H Nagaraj
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia; Translational Research Institute, Brisbane, Australia.
| |
Collapse
|
6
|
Liang S, Su YQ, Liang YL, Wu F, Zhang H, Shi JH, Hong WX, Xu YP. DNA sequence analysis and Jk blood group genotype-phenotype assessment. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1242. [PMID: 33178774 PMCID: PMC7607079 DOI: 10.21037/atm-20-6504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background The Kidd (JK) blood group is critical for clinical blood transfusion. Various methods for Jk typing have been commonly used, including urea hemolysis, serological test, and genotyping. However, the application of molecular methods has so far been restricted to selected samples and not been applied to the population-scale analysis. Methods One hundred eighty-three blood samples, containing 174 samples collected from voluntary blood donors of Chinese Han individuals, together with 3 Jk (aw+b-) and 6 Jk (a-b-) samples, were investigated by standard serology urea hemolysis test and Sanger-sequencing. Complete coverage of exons 4-11 and intron-exon borders have been sequenced. Results We report the frequencies of three SNPs in exon 4, 7, and intron 9. Besides, sequence analysis revealed the simultaneous DNA variants of intron 7 (-68) and exon 9 (838) found in all samples, suggesting the co-inheritance of these SNPs-taking the observed SNPs frequencies into account. Further, we discuss the potential of the sequencing technique for high-resolution genotyping. Conclusions The described sequencing method for Jk exons delivers a genotyping technique for Jk molecular characterization. According to the co-inheritance of these DNA variants in intron 7 (-68) and exon 9 (838), and their regularity linkage with Jk phenotypes, these two sites offer a potential sequencing target for rapid and far more simplified Jk typing that can supplement routine serology and urea hemolysis tests.
Collapse
Affiliation(s)
- Shuang Liang
- Shenzhen Institute of Transfusion Medicine, Shenzhen Blood Center, Shenzhen, China
| | - Yu-Qing Su
- Shenzhen Institute of Transfusion Medicine, Shenzhen Blood Center, Shenzhen, China
| | - Yan-Lian Liang
- Shenzhen Institute of Transfusion Medicine, Shenzhen Blood Center, Shenzhen, China
| | - Fan Wu
- Shenzhen Institute of Transfusion Medicine, Shenzhen Blood Center, Shenzhen, China
| | - Hao Zhang
- Business Department, Shenzhen Blood Center, Shenzhen, China
| | - Jia-Hai Shi
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Wen-Xu Hong
- Shenzhen Institute of Transfusion Medicine, Shenzhen Blood Center, Shenzhen, China
| | - Yun-Ping Xu
- Shenzhen Institute of Transfusion Medicine, Shenzhen Blood Center, Shenzhen, China
| |
Collapse
|
7
|
Patil V, Ingle DR. An association between fingerprint patterns with blood group and lifestyle based diseases: a review. Artif Intell Rev 2020; 54:1803-1839. [PMID: 32836652 PMCID: PMC7433280 DOI: 10.1007/s10462-020-09891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the current era of the digital world, the hash of any digital means considered as a footprint or fingerprint of any digital term but from the ancient era, human fingerprint considered as the most trustworthy criteria for identification and it also cannot be changed with time even up to the death of an individual. In the court of law, fingerprint-proof is undeniably the most dependable and acceptable evidence to date. Fingerprint designs are exclusive in each human and the chance of two individuals having identical fingerprints is an exceptional case about one in sixty-four thousand million also the fingerprint minutiae patterns of the undistinguishable twins are different, and the ridge pattern of each fingertip remain unchanged from birth to till death. Fingerprints can be divided into basic four categories i.e. Loop, whorl, arch, and composites, nevertheless, there are more than 100 interleaved ridge and valleys physiognomies, called Galton’s details, in a single rolled fingerprint. Due to the immense potential of fingerprints as an effective method of identification, the present research paper tries to investigate the problem of blood group identification and analysis of diseases those arises with aging like hypertension, type 2-diabetes and arthritis from a fingerprint by analyzing their patterns correlation with blood group and age of an individual. The work has been driven by studies of anthropometry, biometric trademark, and pattern recognition proposing that it is possible to predict blood group using fingerprint map reading. Dermatoglyphics as a diagnostic aid used from ancient eras and now it is well established in number of diseases which have strong hereditary basis and is employed as a method for screening for abnormal anomalies. Apart from its use in predicting the diagnosis of disease; dermatoglyphics is also used in forensic medicine in individual identification, physical anthropology, human genetics and medicine. However, the Machine and Deep Learning techniques, if used for fingerprint minutiae patterns to be trained by Neural Network for blood group prediction and classification of common clinical diseases arises with aging based on lifestyle would be an unusual research work.
Collapse
Affiliation(s)
- Vijaykumar Patil
- Bharati Vidyapeeth College of Engineering, University of Mumbai, Navi Mumbai, India
| | - D R Ingle
- Bharati Vidyapeeth College of Engineering, University of Mumbai, Navi Mumbai, India
| |
Collapse
|
8
|
Storry JR, Jöud M, Olsson ML. Automatic for the people: a rapidly evolving movement for the future of genotyping. Transfusion 2019; 59:3545-3547. [PMID: 31667851 DOI: 10.1111/trf.15561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Jill R Storry
- Clinical Immunology and Transfusion Medicine, Office of Medical Services, Region Skåne, Sweden.,Department of Laboratory Medicine, Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Magnus Jöud
- Clinical Immunology and Transfusion Medicine, Office of Medical Services, Region Skåne, Sweden
| | - Martin L Olsson
- Clinical Immunology and Transfusion Medicine, Office of Medical Services, Region Skåne, Sweden.,Department of Laboratory Medicine, Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Omae Y, Ito S, Takeuchi M, Isa K, Ogasawara K, Kawabata K, Oda A, Kaito S, Tsuneyama H, Uchikawa M, Wada I, Ohto H, Tokunaga K. Integrative genome analysis identified the KANNO blood group antigen as prion protein. Transfusion 2019; 59:2429-2435. [DOI: 10.1111/trf.15319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/25/2019] [Accepted: 03/30/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Yosuke Omae
- Department of Human Genetics, Graduate School of MedicineThe University of Tokyo Tokyo Japan
| | - Shoichi Ito
- Department of Laboratory TestingJapanese Red Cross Tohoku Block Blood Center Miyagi Japan
| | - Mayumi Takeuchi
- Department of Cell Science, Institute of Biomedical SciencesFukushima Medical University Fukushima Japan
| | - Kazumi Isa
- Department of Research and DevelopmentJapanese Red Cross Central Blood Institute Tokyo Japan
| | - Kenichi Ogasawara
- Department of Research and DevelopmentJapanese Red Cross Central Blood Institute Tokyo Japan
| | - Kinuyo Kawabata
- Department of Blood Transfusion and Transplantation ImmunologyFukushima Medical University Hospital Fukushima Japan
| | - Akira Oda
- Blood Group SectionJapanese Red Cross Kanto‐Koshinetsu Block Blood Center Tokyo Japan
| | - Sayaka Kaito
- Blood Group SectionJapanese Red Cross Kanto‐Koshinetsu Block Blood Center Tokyo Japan
| | - Hatsue Tsuneyama
- Blood Group SectionJapanese Red Cross Kanto‐Koshinetsu Block Blood Center Tokyo Japan
| | - Makoto Uchikawa
- Blood Group SectionJapanese Red Cross Kanto‐Koshinetsu Block Blood Center Tokyo Japan
| | - Ikuo Wada
- Department of Cell Science, Institute of Biomedical SciencesFukushima Medical University Fukushima Japan
| | - Hitoshi Ohto
- Department of Blood Transfusion and Transplantation ImmunologyFukushima Medical University Hospital Fukushima Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of MedicineThe University of Tokyo Tokyo Japan
| |
Collapse
|
10
|
Schoeman EM, Roulis EV, Liew YW, Martin JR, Powley T, Wilson B, Millard GM, McGowan EC, Lopez GH, O'Brien H, Condon JA, Flower RL, Hyland CA. Targeted exome sequencing defines novel and rare variants in complex blood group serology cases for a red blood cell reference laboratory setting. Transfusion 2017; 58:284-293. [PMID: 29119571 DOI: 10.1111/trf.14393] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/21/2017] [Accepted: 09/05/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND We previously demonstrated that targeted exome sequencing accurately defined blood group genotypes for reference panel samples characterized by serology and single-nucleotide polymorphism (SNP) genotyping. Here we investigate the application of this approach to resolve problematic serology and SNP-typing cases. STUDY DESIGN AND METHODS The TruSight One sequencing panel and MiSeq platform was used for sequencing. CLC Genomics Workbench software was used for data analysis of the blood group genes implicated in the serology and SNP-typing problem. Sequence variants were compared to public databases listing blood group alleles. The effect of predicted amino acid changes on protein function for novel alleles was assessed using SIFT and PolyPhen-2. RESULTS Among 29 unresolved samples, sequencing defined SNPs in blood group genes consistent with serologic observation: 22 samples exhibited SNPs associated with varied but known blood group alleles and one sample exhibited a chimeric RH genotype. Three samples showed novel variants in the CROM, LAN, and RH systems, respectively, predicting respective amino acid changes with possible deleterious impact. Two samples harbored rare variants in the RH and FY systems, respectively, not previously associated with a blood group allele or phenotype. A final sample comprised a rare variant within the KLF1 transcription factor gene that may modulate DNA-binding activity. CONCLUSION Targeted exome sequencing resolved complex serology problems and defined both novel blood group alleles (CD55:c.203G>A, ABCB6:c.1118_1124delCGGATCG, ABCB6:c.1656-1G>A, and RHD:c.452G>A) and rare variants on blood group alleles associated with altered phenotypes. This study illustrates the utility of exome sequencing, in conjunction with serology, as an alternative approach to resolve complex cases.
Collapse
Affiliation(s)
- Elizna M Schoeman
- Clinical Services and Research, Australian Red Cross Blood Service, Kelvin Grove, Queensland, Australia
| | - Eileen V Roulis
- Clinical Services and Research, Australian Red Cross Blood Service, Kelvin Grove, Queensland, Australia
| | - Yew-Wah Liew
- Red Cell Reference Laboratory, Australian Red Cross Blood Service, Kelvin Grove, Queensland, Australia
| | - Jacqueline R Martin
- Red Cell Reference Laboratory, Australian Red Cross Blood Service, Kelvin Grove, Queensland, Australia
| | - Tanya Powley
- Red Cell Reference Laboratory, Australian Red Cross Blood Service, Kelvin Grove, Queensland, Australia
| | - Brett Wilson
- Red Cell Reference Laboratory, Australian Red Cross Blood Service, Kelvin Grove, Queensland, Australia
| | - Glenda M Millard
- Clinical Services and Research, Australian Red Cross Blood Service, Kelvin Grove, Queensland, Australia
| | - Eunike C McGowan
- Clinical Services and Research, Australian Red Cross Blood Service, Kelvin Grove, Queensland, Australia
| | - Genghis H Lopez
- Clinical Services and Research, Australian Red Cross Blood Service, Kelvin Grove, Queensland, Australia
| | - Helen O'Brien
- Clinical Services and Research, Australian Red Cross Blood Service, Kelvin Grove, Queensland, Australia
| | - Jennifer A Condon
- Red Cell Reference Laboratory, Australian Red Cross Blood Service, Melbourne, Victoria, Australia
| | - Robert L Flower
- Clinical Services and Research, Australian Red Cross Blood Service, Kelvin Grove, Queensland, Australia
| | - Catherine A Hyland
- Clinical Services and Research, Australian Red Cross Blood Service, Kelvin Grove, Queensland, Australia
| |
Collapse
|
11
|
Gorakshakar A, Gogri H, Ghosh K. Evolution of technology for molecular genotyping in blood group systems. Indian J Med Res 2017; 146:305-315. [PMID: 29355136 PMCID: PMC5793464 DOI: 10.4103/ijmr.ijmr_914_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Indexed: 12/11/2022] Open
Abstract
The molecular basis of the blood group antigens was identified first in the 1980s and 1990s. Since then the importance of molecular biology in transfusion medicine has been described extensively by several investigators. Molecular genotyping of blood group antigens is one of the important aspects and is successfully making its way into transfusion medicine. Low-, medium- and high-throughput techniques have been developed for this purpose. Depending on the requirement of the centre like screening for high- or low-prevalence antigens where antisera are not available, correct typing of multiple transfused patients, screening for antigen-negative donor units to reduce the rate of alloimmunization, etc. a suitable technique can be selected. The present review discusses the evolution of different techniques to detect molecular genotypes of blood group systems and how these approaches can be used in transfusion medicine where haemagglutination is of limited value. Currently, this technology is being used in only a few blood banks in India. Hence, there is a need for understanding this technology with all its variations.
Collapse
Affiliation(s)
- Ajit Gorakshakar
- Department of Transfusion Medicine, ICMR- National Institute of Immunohaematology, Mumbai, India
| | - Harita Gogri
- Department of Transfusion Medicine, ICMR- National Institute of Immunohaematology, Mumbai, India
| | | |
Collapse
|
12
|
Schoeman EM, Lopez GH, McGowan EC, Millard GM, O'Brien H, Roulis EV, Liew YW, Martin JR, McGrath KA, Powley T, Flower RL, Hyland CA. Evaluation of targeted exome sequencing for 28 protein-based blood group systems, including the homologous gene systems, for blood group genotyping. Transfusion 2017; 57:1078-1088. [PMID: 28338218 DOI: 10.1111/trf.14054] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 11/22/2016] [Accepted: 12/02/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND Blood group single nucleotide polymorphism genotyping probes for a limited range of polymorphisms. This study investigated whether massively parallel sequencing (also known as next-generation sequencing), with a targeted exome strategy, provides an extended blood group genotype and the extent to which massively parallel sequencing correctly genotypes in homologous gene systems, such as RH and MNS. STUDY DESIGN AND METHODS Donor samples (n = 28) that were extensively phenotyped and genotyped using single nucleotide polymorphism typing, were analyzed using the TruSight One Sequencing Panel and MiSeq platform. Genes for 28 protein-based blood group systems, GATA1, and KLF1 were analyzed. Copy number variation analysis was used to characterize complex structural variants in the GYPC and RH systems. RESULTS The average sequencing depth per target region was 66.2 ± 39.8. Each sample harbored on average 43 ± 9 variants, of which 10 ± 3 were used for genotyping. For the 28 samples, massively parallel sequencing variant sequences correctly matched expected sequences based on single nucleotide polymorphism genotyping data. Copy number variation analysis defined the Rh C/c alleles and complex RHD hybrids. Hybrid RHD*D-CE-D variants were correctly identified, but copy number variation analysis did not confidently distinguish between D and CE exon deletion versus rearrangement. CONCLUSION The targeted exome sequencing strategy employed extended the range of blood group genotypes detected compared with single nucleotide polymorphism typing. This single-test format included detection of complex MNS hybrid cases and, with copy number variation analysis, defined RH hybrid genes along with the RHCE*C allele hitherto difficult to resolve by variant detection. The approach is economical compared with whole-genome sequencing and is suitable for a red blood cell reference laboratory setting.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yew-Wah Liew
- Red Cell Reference Laboratory, Australian Red Cross Blood Service, Brisbane, Queensland, Australia
| | - Jacqueline R Martin
- Red Cell Reference Laboratory, Australian Red Cross Blood Service, Brisbane, Queensland, Australia
| | - Kelli A McGrath
- Red Cell Reference Laboratory, Australian Red Cross Blood Service, Brisbane, Queensland, Australia
| | - Tanya Powley
- Red Cell Reference Laboratory, Australian Red Cross Blood Service, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
13
|
Meyer S, Vollmert C, Trost N, Sigurdardottir S, Portmann C, Gottschalk J, Ries J, Markovic A, Infanti L, Buser A, Amar el Dusouqui S, Rigal E, Castelli D, Weingand B, Maier A, Mauvais SM, Sarraj A, Braisch MC, Thierbach J, Hustinx H, Frey BM, Gassner C. MNSs genotyping by MALDI-TOF MS shows high concordance with serology, allows gene copy number testing and reveals new St(a) alleles. Br J Haematol 2016; 174:624-36. [DOI: 10.1111/bjh.14095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/15/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Stefan Meyer
- Blood Transfusion Service Zürich; Department of Molecular Diagnostics & Research (MOC); Swiss Red Cross (SRC); Zürich Schlieren Switzerland
| | | | - Nadine Trost
- Blood Transfusion Service Zürich; Department of Molecular Diagnostics & Research (MOC); Swiss Red Cross (SRC); Zürich Schlieren Switzerland
| | - Sonja Sigurdardottir
- Blood Transfusion Service Zürich; Department of Molecular Diagnostics & Research (MOC); Swiss Red Cross (SRC); Zürich Schlieren Switzerland
| | - Claudia Portmann
- Blood Transfusion Service Zürich; Department of Molecular Diagnostics & Research (MOC); Swiss Red Cross (SRC); Zürich Schlieren Switzerland
| | | | - Judith Ries
- Blood Transfusion Service Zürich; SRC; Schlieren Switzerland
| | | | - Laura Infanti
- Blood Transfusion Service beider Basel; SRC; Basel Switzerland
| | - Andreas Buser
- Blood Transfusion Service beider Basel; SRC; Basel Switzerland
| | | | - Emmanuel Rigal
- Blood Transfusion Service Genève; SRC; Geneva Switzerland
| | - Damiano Castelli
- Blood Transfusion Service Svizzera Italiana; SRC; Lugano Switzerland
| | - Bettina Weingand
- Blood Transfusion Service Zentralschweiz; SRC; Lucerne Switzerland
| | - Andreas Maier
- Blood Transfusion Service Zentralschweiz; SRC; Lucerne Switzerland
| | - Simon M. Mauvais
- Blood Transfusion Service Neuchâtel-Jura; SRC; Neuchâtel Switzerland
| | - Amira Sarraj
- Blood Transfusion Service Neuchâtel-Jura; SRC; Neuchâtel Switzerland
| | | | - Jutta Thierbach
- Blood Transfusion Service Ostschweiz; SRC; St. Gallen Switzerland
| | - Hein Hustinx
- Interregional Blood Transfusion; SRC, Ltd.; Bern Switzerland
| | - Beat M. Frey
- Blood Transfusion Service Zürich; SRC; Schlieren Switzerland
| | - Christoph Gassner
- Blood Transfusion Service Zürich; Department of Molecular Diagnostics & Research (MOC); Swiss Red Cross (SRC); Zürich Schlieren Switzerland
| |
Collapse
|
14
|
Boccoz SA, Le Goff GC, Mandon CA, Corgier BP, Blum LJ, Marquette CA. Development and Validation of a Fully Automated Platform for Extended Blood Group Genotyping. J Mol Diagn 2015; 18:144-52. [PMID: 26621100 DOI: 10.1016/j.jmoldx.2015.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/27/2014] [Accepted: 09/09/2015] [Indexed: 12/20/2022] Open
Abstract
Thirty-five blood group systems, containing >300 antigens, are listed by the International Society of Blood Transfusion. Most of these antigens result from a single nucleotide polymorphism. Blood group typing is conventionally performed by serology. However, this technique has some limitations and cannot respond to the growing demand of blood products typed for a large number of antigens. The knowledge of the molecular basis of these red blood cell systems allowed the implementation of molecular biology methods in immunohematology laboratories. Here, we describe a blood group genotyping assay based on the use of TKL immobilization support and microarray-based HIFI technology that takes approximately 4 hours and 30 minutes from whole-blood samples to results analysis. Targets amplified by multiplex PCR were hybridized on the chip, and a revelation step allowed the simultaneous identification of up to 24 blood group antigens, leading to the determination of extended genotypes. Two panels of multiplex PCR were developed: Panel 1 (KEL1/2, KEL3/4; JK1/2; FY1/2; MNS1/2, MNS3/4, FY*Fy et FY*X) and Panel 2 (YT1/2; CO1/2; DO1/2, HY+, Jo(a+); LU1/2; DI1/2). We present the results of the evaluation of our platform on a panel of 583 and 190 blood donor samples for Panel 1 and 2, respectively. Good correlations (99% to 100%) with reference were obtained.
Collapse
Affiliation(s)
- Stephanie A Boccoz
- Institute of Chemistry and Molecular and Supramolecular Biochemistry Team Enzyme Engineering, Biomimetic Membranes and Supramolecular Assemblies, CNRS 5246 ICBMS, Université Lyon 1, Villeurbanne, France
| | | | | | | | - Loïc J Blum
- Institute of Chemistry and Molecular and Supramolecular Biochemistry Team Enzyme Engineering, Biomimetic Membranes and Supramolecular Assemblies, CNRS 5246 ICBMS, Université Lyon 1, Villeurbanne, France
| | - Christophe A Marquette
- Institute of Chemistry and Molecular and Supramolecular Biochemistry Team Enzyme Engineering, Biomimetic Membranes and Supramolecular Assemblies, CNRS 5246 ICBMS, Université Lyon 1, Villeurbanne, France.
| |
Collapse
|
15
|
|
16
|
Johnsen JM. Using red blood cell genomics in transfusion medicine. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2015; 2015:168-176. [PMID: 26637717 DOI: 10.1182/asheducation-2015.1.168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Blood types (blood group antigens) are heritable polymorphic antigenic molecules on the surface of blood cells. These were amongst the first human Mendelian traits identified, and the genetic basis of nearly all of the hundreds of blood types is known. Clinical laboratory methods have proven useful to identify selected blood group gene variants, and use of genetic blood type information is becoming widespread. However, the breadth and complexity of clinically relevant blood group genetic variation poses challenges. With recent advances in next-generation sequencing technologies, a more comprehensive DNA sequence-based genetic blood typing approach is now feasible. This chapter introduces the practitioner to high-resolution genetic blood typing beginning with an overview of the genetics of blood group antigens, the clinical problem of allosensitization, current blood type testing methods, and then discussion of next-generation sequencing and its application to the problem of genetic blood typing.
Collapse
Affiliation(s)
- Jill M Johnsen
- Bloodworks Research Institute, and Division of Hematology, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|