1
|
Xu D, Tong Y, Chen B, Li B, Wang S, Zhang D. The influence of first desaturase subfamily genes on fatty acid synthesis, desiccation tolerance and inter-caste nutrient transfer in the termite Coptotermes formosanus. INSECT MOLECULAR BIOLOGY 2024; 33:55-68. [PMID: 37750189 DOI: 10.1111/imb.12877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
Desaturase enzymes play an essential role in the biosynthesis of unsaturated fatty acids (UFAs). In this study, we identified seven "first desaturase" subfamily genes (Cfor-desatA1, Cfor-desatA2-a, Cfor-desatA2-b, Cfor-desatB-a, Cfor-desatB-b, Cfor-desatD and Cfor-desatE) from the Formosan subterranean termite Coptotermes formosanus. These desaturases were highly expressed in the cuticle and fat body of C. formosanus. Inhibition of either the Cfor-desatA2-a or Cfor-desatA2-b gene resulted in a significant decrease in the contents of fatty acids (C16:0, C18:0, C18:1 and C18:2) in worker castes. Moreover, we observed that inhibition of most of desaturase genes identified in this study had a negative impact on the survival rate and desiccation tolerance of workers. Interestingly, when normal soldiers were reared together with dsCfor-desatA2-b-treated workers, they exhibited higher mortality, suggesting that desaturase had an impact on trophallaxis among C. formosanus castes. Our findings shed light on the novel roles of desaturase family genes in the eusocial termite C. formosanus.
Collapse
Affiliation(s)
- Danni Xu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Yuxin Tong
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Bosheng Chen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Baoling Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Shengyin Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Dayu Zhang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
2
|
Starikov AY, Sidorov RA, Mironov KS, Los DA. The Specificities of Lysophosphatidic Acid Acyltransferase and Fatty Acid Desaturase Determine the High Content of Myristic and Myristoleic Acids in Cyanobacterium sp. IPPAS B-1200. Int J Mol Sci 2024; 25:774. [PMID: 38255848 PMCID: PMC10815888 DOI: 10.3390/ijms25020774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The cyanobacterial strain Cyanobacterium sp. IPPAS B-1200 isolated from Lake Balkhash is characterized by high relative amounts of myristic (30%) and myristoleic (10%) acids. The remaining fatty acids (FAs) are represented mainly by palmitic (20%) and palmitoleic (40%) acids. We expressed the genes for lysophosphatidic acid acyltransferase (LPAAT; EC 2.3.1.51) and Δ9 fatty acid desaturase (FAD; EC 1.14.19.1) from Cyanobacterium sp. IPPAS B-1200 in Synechococcus elongatus PCC 7942, which synthesizes myristic and myristoleic acids at the level of 0.5-1% and produces mainly palmitic (~60%) and palmitoleic (35%) acids. S. elongatus cells that expressed foreign LPAAT synthesized myristic acid at 26%, but did not produce myristoleic acid, suggesting that Δ9-FAD of S. elongatus cannot desaturate FAs with chain lengths less than C16. Synechococcus cells that co-expressed LPAAT and Δ9-FAD of Cyanobacterium synthesized up to 45% palmitoleic and 9% myristoleic acid, suggesting that Δ9-FAD of Cyanobacterium is capable of desaturating saturated acyl chains of any length.
Collapse
Affiliation(s)
| | | | | | - Dmitry A. Los
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 25, 127276 Moscow, Russia; (A.Y.S.); (R.A.S.); (K.S.M.)
| |
Collapse
|
3
|
Starikov AY, Sidorov RA, Goriainov SV, Los DA. Acyl-Lipid Δ 6-Desaturase May Act as a First FAD in Cyanobacteria. Biomolecules 2022; 12:biom12121795. [PMID: 36551223 PMCID: PMC9775110 DOI: 10.3390/biom12121795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Fatty acid desaturases (FADs) play important roles in various metabolic and adaptive pathways in all living organisms. They represent a superfamily of oxygenases that introduce double bonds into the acyl chains of fatty acids (FAs). These enzymes are highly specific to the length of the carbon chain, position of double bonds formation, etc. The modes by which FADs "count" the position of the double bond formation may differ. In cyanobacteria, the first double bond is formed between 9th and 10th carbons (position Δ9), counting from the carboxylic end of an FA. Other FADs that produce polyunsaturated FAs may introduce double bonds counting from the carboxyl (Δ) or methyl (ω) terminus, or from a pre-existing double bond towards carboxyl or methyl terminus of an FA chain. Here, we expressed the desD gene for the Δ6-FAD from Synechocystis sp. PCC 6803 in Synechococcus elongatus PCC 7942 (which is capable of synthesizing only monoenoic FAs desaturated mainly at position Δ9) and observed the appearance of unusual monoenoic FAs desaturated at position Δ6, as well as Δ6,9 dienoic FAs. Exogenously added cis-10-heptadecenoic acid (17:1Δ10) was converted into cis-6,10-heptadecadienoic (17:2Δ6,10). These data demonstrate the ability of Δ6-FAD to introduce the first double bond into the unsaturated substrates and suggests that it "counts" from the carboxyl end, irrespective of the absence or presence of a previous double bond in an FA chain.
Collapse
Affiliation(s)
- Alexander Y. Starikov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 25, 127276 Moscow, Russia
| | - Roman A. Sidorov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 25, 127276 Moscow, Russia
| | - Sergei V. Goriainov
- Laboratory of High-Resolution Mass Spectrometry and NMR Spectroscopy of the Scientific and Educational Center, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Street, Build. 6, 117198 Moscow, Russia
| | - Dmitry A. Los
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 25, 127276 Moscow, Russia
- Correspondence:
| |
Collapse
|
4
|
Cerone M, Smith TK. Desaturases: Structural and mechanistic insights into the biosynthesis of unsaturated fatty acids. IUBMB Life 2022; 74:1036-1051. [PMID: 36017969 PMCID: PMC9825965 DOI: 10.1002/iub.2671] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/21/2022] [Indexed: 01/11/2023]
Abstract
This review highlights the key role of fatty acid desaturases in the synthesis of naturally occurring, more common and not unsaturated fatty acids. The three major classes of fatty acid desaturases, such as acyl-lipid, acyl-acyl carrier protein and acyl-coenzyme A, are described in detail, with particular attention to the cellular localisation, the structure, the substrate and product specificity and the expression and regulation of desaturase genes. The review also gives an insight into the biocatalytic reaction of fatty acid desaturation by covering the general and more class-specific mechanistic studies around the synthesis of unsaturated fatty acids Finally, we conclude the review by looking at the numerous novel applications for desaturases in order to meet the very high demand for polyunsaturated fatty acids, taking into account the opportunity for the development of new, more efficient, easily reproducible, sustainable bioengineering advances in the field.
Collapse
Affiliation(s)
- Michela Cerone
- Biomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsScotland
| | - Terry K. Smith
- Biomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsScotland
| |
Collapse
|
5
|
Halim NFAA, Ali MSM, Leow ATC, Rahman RNZRA. Membrane fatty acid desaturase: biosynthesis, mechanism, and architecture. Appl Microbiol Biotechnol 2022; 106:5957-5972. [PMID: 36063178 DOI: 10.1007/s00253-022-12142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022]
Abstract
Fatty acid desaturase catalyzes the desaturation reactions by inserting double bonds into the fatty acyl chain, producing unsaturated fatty acids, which play a vital part in the synthesis of polyunsaturated fatty acids. Though soluble fatty acid desaturases have been described extensively in advanced organisms, there are very limited studies of membrane fatty acid desaturases due to their difficulties in producing a sufficient amount of recombinant desaturases. However, the advancement of technology has shown substantial progress towards the development of elucidating crystal structures of membrane fatty acid desaturase, thus, allowing modification of structure to be manipulated. Understanding the structure, mechanism, and biosynthesis of fatty acid desaturase lay a foundation for the potential production of various strategies associated with alteration and modifications of polyunsaturated fatty acids. This manuscript presents the current state of knowledge and understanding about the structure, mechanisms, and biosynthesis of fatty acid desaturase. In addition, the role of unsaturated fatty acid desaturases in health and diseases is also encompassed. This will be useful in understanding the molecular basis and structural protein of fatty acid desaturase that are significant for the advancement of therapeutic strategies associated with the improvement of health status. KEY POINTS: • Current state of knowledge and understanding about the biosynthesis, mechanisms, and structure of fatty acid desaturase. • The role of unsaturated fatty acid desaturase. • The molecular basis and structural protein elucidated the crystal structure of fatty acid desaturase.
Collapse
Affiliation(s)
- Nur Farah Anis Abd Halim
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
6
|
Cui J, Chen H, Tang X, Zhao J, Zhang H, Chen YQ, Chen W. Δ6 fatty acid desaturases in polyunsaturated fatty acid biosynthesis: insights into the evolution, function with substrate specificities and biotechnological use. Appl Microbiol Biotechnol 2020; 104:9947-9963. [PMID: 33094384 DOI: 10.1007/s00253-020-10958-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022]
Abstract
Δ6 fatty acid desaturases (FADS6) have different substrate specificities that impact the ratio of omega-6/omega-3 polyunsaturated fatty acids, which are involved in regulating multiple signalling pathways associated with various diseases. For decades, FADS6 with different substrate specificities have been characterized and the functions of these crucial enzymes have been investigated, while it remains enigmatic that the substrate specificities of FADS6 from various species have a huge difference. This review summarizes the substrate specificities of FADS6 in different species and reveals the underlying relationship. Further evaluation of biochemical properties has revealed that the FADS6 prefer linoleic acid that is more hydrophilic and stable. Domain-swapping and site-directed mutagenesis have been employed to delineate the regions and sites that affect the substrate specificities of FADS6. These analyses improve our understanding of the functions of FADS6 and offer information for the discovery of novel biological resources. KEY POINTS: • Outline of the excavation and identification of Δ6 fatty acid desaturases. • Overview of methods used to determine the pivotal resides of desaturases. • Application of substrate properties to generate specific fatty acids.
Collapse
Affiliation(s)
- Jie Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China. .,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, People's Republic of China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, 214122, People's Republic of China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,Department of Cancer Biology, Wake Forest School of Medicine, 5, Winston-Salem, NC, 27127, USA
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, People's Republic of China.,Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| |
Collapse
|
7
|
Nachtschatt M, Okada S, Speight R. Integral Membrane Fatty Acid Desaturases: A Review of Biochemical, Structural, and Biotechnological Advances. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.202000181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Matthias Nachtschatt
- Commonwealth Scientific and Industrial Research Organisation Clunies Ross St. Canberra ACT 2601 Australia
- Queensland University of Technology 2 George St. Brisbane QLD 4000 Australia
| | - Shoko Okada
- Commonwealth Scientific and Industrial Research Organisation Clunies Ross St. Canberra ACT 2601 Australia
| | - Robert Speight
- Queensland University of Technology 2 George St. Brisbane QLD 4000 Australia
| |
Collapse
|
8
|
Starikov AY, Sidorov RA, Mironov KS, Goriainov SV, Los DA. Delta or Omega? Δ12 (ω6) fatty acid desaturases count 3C after the pre-existing double bond. Biochimie 2020; 179:46-53. [PMID: 32946991 DOI: 10.1016/j.biochi.2020.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/25/2020] [Accepted: 09/14/2020] [Indexed: 11/24/2022]
Abstract
Fatty acid desaturases (FADs) represent a class of oxygen-dependent enzymes that dehydrogenate C-C bonds in the fatty acids (FAs) producing unsaturated CC double bonds that markedly change the properties of biological membranes. FADs are highly specific towards their acyl substrates, the position and configuration of the introduced double bonds. The double bond positioning of soluble acyl-carrier-protein Δ9-FADs was determined relative to the carboxyl end of a FA. Similar mode was suggested for the acyl-lipid Δ12-FADs (also known as ω6-FADs), however, their exact counting order remain unknown. Here we used monounsaturated odd- (17:1Δ10) and even-chain (18:1Δ11) FAs to show that acyl-lipid Δ12-FADs of, at least, two cyanobacterial species, Gloeobacter violaceus and Synechocystis sp. strain PCC 6803, use neither end of the fatty acid (Δ or ω) as a counting reference point; but count three carbons toward the methyl end from an existing double bond in the monoene precursors irrespective of a FA chain length.
Collapse
Affiliation(s)
- Alexander Y Starikov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russian Federation
| | - Roman A Sidorov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russian Federation
| | - Kirill S Mironov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russian Federation
| | - Sergei V Goriainov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street, Build. 6, Moscow, 117198, Russian Federation
| | - Dmitry A Los
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russian Federation.
| |
Collapse
|
9
|
Degraeve-Guilbault C, Gomez RE, Lemoigne C, Pankansem N, Morin S, Tuphile K, Joubès J, Jouhet J, Gronnier J, Suzuki I, Coulon D, Domergue F, Corellou F. Plastidic Δ6 Fatty-Acid Desaturases with Distinctive Substrate Specificity Regulate the Pool of C18-PUFAs in the Ancestral Picoalga Ostreococcus tauri. PLANT PHYSIOLOGY 2020; 184:82-96. [PMID: 32669420 PMCID: PMC7479901 DOI: 10.1104/pp.20.00281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/07/2020] [Indexed: 05/08/2023]
Abstract
Eukaryotic Δ6-desaturases are microsomal enzymes that balance the synthesis of ω-3 and ω-6 C18-polyunsaturated fatty acids (C18-PUFAs) according to their specificity. In several microalgae, including Ostreococcus tauri, plastidic C18-PUFAs are strictly regulated by environmental cues suggesting an autonomous control of Δ6-desaturation of plastidic PUFAs. Here, we identified two putative front-end Δ6/Δ8-desaturases from O tauri that, together with putative homologs, cluster apart from other characterized Δ6-desaturases. Both were plastid-located and unambiguously displayed a Δ6-desaturation activity when overexpressed in the heterologous hosts Nicotiana benthamiana and Synechocystis sp. PCC6803, as in the native host. Detailed lipid analyses of overexpressing lines unveiled distinctive ω-class specificities, and most interestingly pointed to the importance of the lipid head-group and the nonsubstrate acyl-chain for the desaturase efficiency. One desaturase displayed a broad specificity for plastidic lipids and a preference for ω-3 substrates, while the other was more selective for ω-6 substrates and for lipid classes including phosphatidylglycerol as well as the peculiar 16:4-galactolipid species occurring in the native host. Overexpression of both Δ6-desaturases in O tauri prevented the regulation of C18-PUFA under phosphate deprivation and triggered glycerolipid fatty-acid remodeling, without causing any obvious alteration in growth or photosynthesis. Tracking fatty-acid modifications in eukaryotic hosts further suggested the export of plastidic lipids to extraplastidic compartments.
Collapse
Affiliation(s)
- Charlotte Degraeve-Guilbault
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Centre National de la Recherche Scientifique-Université de Bordeaux, 33883 Villenave d'Ornon, France
| | - Rodrigo E Gomez
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Centre National de la Recherche Scientifique-Université de Bordeaux, 33883 Villenave d'Ornon, France
| | - Cécile Lemoigne
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Centre National de la Recherche Scientifique-Université de Bordeaux, 33883 Villenave d'Ornon, France
| | - Nattiwong Pankansem
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Soizic Morin
- Institut National de la Recherche Agronomique, Unité de Recherche Ecosystèmes Aquatiques et Changements Globaux, 33612 Cestas, France
| | - Karine Tuphile
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Centre National de la Recherche Scientifique-Université de Bordeaux, 33883 Villenave d'Ornon, France
| | - Jérôme Joubès
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Centre National de la Recherche Scientifique-Université de Bordeaux, 33883 Villenave d'Ornon, France
| | - Juliette Jouhet
- Laboratoire de Biologie Cellulaire et Végétale, Unité Mixte de Recherche 5168, Centre National de la Recherche Scientifique-French Alternative Energies and Atomic Energy Commission-Institut National de la Recherche Agronomique-Université Grenoble Alpes, Interdisciplinary Research Institute of Grenoble, 38054 Grenoble, France
| | - Julien Gronnier
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Centre National de la Recherche Scientifique-Université de Bordeaux, 33883 Villenave d'Ornon, France
| | - Iwane Suzuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Denis Coulon
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Centre National de la Recherche Scientifique-Université de Bordeaux, 33883 Villenave d'Ornon, France
| | - Frédéric Domergue
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Centre National de la Recherche Scientifique-Université de Bordeaux, 33883 Villenave d'Ornon, France
| | - Florence Corellou
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Centre National de la Recherche Scientifique-Université de Bordeaux, 33883 Villenave d'Ornon, France
| |
Collapse
|
10
|
Cai Y, Yu XH, Chai J, Liu CJ, Shanklin J. A conserved evolutionary mechanism permits Δ9 desaturation of very-long-chain fatty acyl lipids. J Biol Chem 2020; 295:11337-11345. [PMID: 32527722 DOI: 10.1074/jbc.ra120.014258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/08/2020] [Indexed: 11/06/2022] Open
Abstract
Δ9 fatty acyl desaturases introduce a cis-double bond between C9 and C10 of saturated fatty acyl chains. From the crystal structure of the mouse stearoyl-CoA desaturase (mSCD1) it was proposed that Tyr-104, a surface residue located at the distal end of the fatty acyl binding pocket plays a key role in specifying 18C selectivity. We created mSCD1-Y104G to test the hypothesis that eliminating this bulky side chain would create an opening and permit the substrate's methyl end to protrude through the enzyme into the lipid bilayer, facilitating the desaturation of very-long-chain (VLC) substrates. Consistent with this hypothesis, Y104G acquired the ability to desaturate 24C and 26C acyl-CoAs while maintaining its Δ9-regioselectivity. We also investigated two distantly related very-long-chain fatty acyl (VLCFA) desaturases from Arabidopsis, ADS1.2 and ADS1.4, which have Ala and Gly, respectively, in place of the gatekeeping Tyr found in mSCD1. Substitution of Tyr for Ala and Gly in ADS1.2 and ADS1.4, respectively, blocked their ability to desaturate VLCFAs. Further, we identified a pair of fungal desaturase homologs which contained either an Ile or a Gly at this location and showed that only the Gly-containing desaturase was capable of very-long-chain desaturation. The conserved desaturase architecture wherein a surface residue with a single bulky side chain forms the end of the substrate binding cavity predisposes them to single amino acid substitutions that enable a switch between long- and very-long-chain selectivity. The data presented here show that such changes have independently occurred multiple times during evolution.
Collapse
Affiliation(s)
- Yuanheng Cai
- Biochemistry & Cell Biology Department, Stony Brook University, Stony Brook, New York, USA
| | - Xiao-Hong Yu
- Biochemistry & Cell Biology Department, Stony Brook University, Stony Brook, New York, USA
| | - Jin Chai
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Chang-Jun Liu
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - John Shanklin
- Biochemistry & Cell Biology Department, Stony Brook University, Stony Brook, New York, USA .,Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| |
Collapse
|
11
|
Reis D, Pérez J, Lund I, Acosta N, Abdul-Jalbar B, Bolaños A, Rodríguez C. Esterification and modification of [1-14C] n-3 and n-6 polyunsaturated fatty acids in pikeperch (Sander lucioperca) larvae reared under linoleic or α-linolenic acid-based diets and variable environmental salinities. Comp Biochem Physiol B Biochem Mol Biol 2020; 246-247:110449. [DOI: 10.1016/j.cbpb.2020.110449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022]
|
12
|
Rivera-Pérez C, Valenzuela-Quiñonez F, Caraveo-Patiño J. Comparative and functional analysis of desaturase FADS1 (∆5) and FADS2 (∆6) orthologues of marine organisms. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100704. [PMID: 32554222 DOI: 10.1016/j.cbd.2020.100704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/02/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
Abstract
Fatty acid desaturases are key enzymes involved in unsaturated fatty acid biosynthesis, which insert double bonds at specific positions of fatty acids, playing a pivotal role in unsaturated fatty acid synthesis required for membrane lipid fluidity. The ∆5 and ∆6 desaturases are responsible for producing long chain-polyunsaturated fatty acids (LC-PUFA) through their precursors α-linolenic acid and linoleic acid in organisms lacking or with very low ability to synthesize LC-PUFA by themselves. Extensive studies of fatty acid desaturases are available in model organisms, such as humans and mouse; however, the diversity of these genes in the marine biodiversity is less known. This study performed an exhaustive analysis to identify the ∆5 and ∆6 desaturases in the available marine genomes in databases, as well as transcriptomes and EST databases, and their coding sequences were compared to the well-characterized ∆5 and ∆6 desaturases from humans. The FADS1 and FADS2 genetic structures are well conserved among all the organisms analyzed. A common amino acid pattern was identified to discriminate between ∆5 and ∆6 desaturases. The analysis of the conserved motif involved in catalysis showed that 20% of the desaturases, ∆5 and ∆6, have lost motifs required for catalysis. Additionally, bifunctional ∆5/∆6 desaturases were able to be identified by amino acid sequence patterns found in previously described enzymes. A revision of the expression profiles and functional activity on sequences in databases and scientific literature provided information regarding the function of these marine organism enzymes.
Collapse
Affiliation(s)
| | | | - Javier Caraveo-Patiño
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, B.C.S. 23096, Mexico
| |
Collapse
|
13
|
Cai Y, Yu XH, Liu Q, Liu CJ, Shanklin J. Two clusters of residues contribute to the activity and substrate specificity of Fm1, a bifunctional oleate and linoleate desaturase of fungal origin. J Biol Chem 2018; 293:19844-19853. [PMID: 30348899 PMCID: PMC6314118 DOI: 10.1074/jbc.ra118.005972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/17/2018] [Indexed: 12/04/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) have important industrial, physiological, and nutritional properties. Plants use the sequential activities of FAD2 and FAD3 desaturases to convert 18:1Δ9 to the important PUFA 18:3Δ9,12,15, whereas the fungus Fusarium verticillioides 7600 uses the bifunctional desaturase Fm1 for both reactions. Here, we used a combination of sequence comparisons, structural modeling, and mutagenesis experiments to investigate Fm1's regioselectivity and identified two functionally relevant clusters of residues that contribute to Fm1 activity. We found that cluster I (Leu153, Phe157, and His194), located near the catalytic iron ions, predominantly affects activity, whereas cluster II (Tyr280, His284, and Leu287), located in a helix forming the entrance to the substrate-binding pocket, mainly specifies 15-desaturation. Individual or combined substitutions of cluster II residues substantially reduced 15-desaturation. The combination of F157W from cluster I with Y280L, H284V, and L287T from cluster II created an increased-activity variant that almost completely lost the ability to desaturate at C15 and acted almost exclusively as a 12-desaturase. No variants were identified in which 15-desaturation occurred in the absence of 12-desaturation. Fm1 displayed only traces of activity with C16 substrate, but several cluster I variants exhibited increased activity with both 18:1 and 16:1 substrates, converting 16:1Δ9 to 16:3Δ9,12,15, consistent with Fm1 performing sequential v + 3 desaturation reactions at C12 and then C15. We propose that cluster II residues interact with the substrate headgroup when the acyl chain contains both Δ9 and Δ12 double bonds, in which case C15 becomes positioned adjacent to the di-iron site enabling a second v + 3 desaturation.
Collapse
Affiliation(s)
- Yuanheng Cai
- From the Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, New York 11794 and
| | - Xiao-Hong Yu
- From the Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, New York 11794 and
| | - Qun Liu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Chang-Jun Liu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - John Shanklin
- From the Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, New York 11794 and .,Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| |
Collapse
|
14
|
Sastre DE, Saita E, Uttaro AD, de Mendoza D, Altabe SG. Structural determinant of functionality in acyl lipid desaturases. J Lipid Res 2018; 59:1871-1879. [PMID: 30087203 DOI: 10.1194/jlr.m085258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/17/2018] [Indexed: 11/20/2022] Open
Abstract
Little is known about the structure-function relationship of membrane-bound lipid desaturases. Using a domain-swapping strategy, we found that the N terminus (comprising the two first transmembrane segments) region of Bacillus cereus DesA desaturase improves Bacillus subtilis Des activity. In addition, the replacement of the first two transmembrane domains from Bacillus licheniformis inactive open reading frame (ORF) BL02692 with the corresponding domain from DesA was sufficient to resurrect this enzyme. Unexpectedly, we were able to restore the activity of ORF BL02692 with a single substitution (Cys40Tyr) of a cysteine localized in the first transmembrane domain close to the lipid-water interface. Substitution of eight residues (Gly90, Trp104, Lys172, His228, Pro257, Leu275, Tyr282, and Leu284) by site-directed mutagenesis produced inactive variants of DesA. Homology modeling of DesA revealed that His228 is part of the metal binding center, together with the canonical His boxes. Trp104 shapes the hydrophobic tunnel, whereas Gly90 and Lys172 are probably involved in substrate binding/recognition. Pro257, Leu275, Tyr282, and Leu284 might be relevant for the structural arrangement of the active site or interaction with electron donors. This study reveals the role of the N-terminal region of Δ5 phospholipid desaturases and the individual residues necessary for the activity of this class of enzymes.
Collapse
Affiliation(s)
- Diego E Sastre
- Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina; and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo, Rosario, Argentina
| | - Emilio Saita
- Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina; and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo, Rosario, Argentina
| | - Antonio D Uttaro
- Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina; and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo, Rosario, Argentina
| | - Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina; and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo, Rosario, Argentina
| | - Silvia G Altabe
- Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina; and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo, Rosario, Argentina
| |
Collapse
|
15
|
Gerlt JA. Genomic Enzymology: Web Tools for Leveraging Protein Family Sequence-Function Space and Genome Context to Discover Novel Functions. Biochemistry 2017; 56:4293-4308. [PMID: 28826221 PMCID: PMC5569362 DOI: 10.1021/acs.biochem.7b00614] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
The exponentially increasing number
of protein and nucleic acid
sequences provides opportunities to discover novel enzymes, metabolic
pathways, and metabolites/natural products, thereby adding to our
knowledge of biochemistry and biology. The challenge has evolved from
generating sequence information to mining the databases to integrating
and leveraging the available information, i.e., the availability of
“genomic enzymology” web tools. Web tools that allow
identification of biosynthetic gene clusters are widely used by the
natural products/synthetic biology community, thereby facilitating
the discovery of novel natural products and the enzymes responsible
for their biosynthesis. However, many novel enzymes with interesting
mechanisms participate in uncharacterized small-molecule metabolic
pathways; their discovery and functional characterization also can
be accomplished by leveraging information in protein and nucleic acid
databases. This Perspective focuses on two genomic enzymology web
tools that assist the discovery novel metabolic pathways: (1) Enzyme
Function Initiative-Enzyme Similarity Tool (EFI-EST) for generating
sequence similarity networks to visualize and analyze sequence–function
space in protein families and (2) Enzyme Function Initiative-Genome
Neighborhood Tool (EFI-GNT) for generating genome neighborhood networks
to visualize and analyze the genome context in microbial and fungal
genomes. Both tools have been adapted to other applications to facilitate
target selection for enzyme discovery and functional characterization.
As the natural products community has demonstrated, the enzymology
community needs to embrace the essential role of web tools that allow
the protein and genome sequence databases to be leveraged for novel
insights into enzymological problems.
Collapse
Affiliation(s)
- John A Gerlt
- Departments of Biochemistry and Chemistry, Institute for Genomic Biology, University of Illinois , Urbana-Champaign Urbana, Illinois 61801, United States
| |
Collapse
|
16
|
Wilding M, Nachtschatt M, Speight R, Scott C. An improved and general streamlined phylogenetic protocol applied to the fatty acid desaturase family. Mol Phylogenet Evol 2017; 115:50-57. [PMID: 28739372 DOI: 10.1016/j.ympev.2017.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 11/16/2022]
Abstract
Numerous tools to generate phylogenetic estimates are available, but there is no single protocol that will produce an accurate phylogenetic tree for any dataset. Here, we investigated some of those tools, paying particular attention to different alignment algorithms, in order to produce a phylogeny for the integral membrane fatty acid desaturase (FAD) family. Herein, we report a novel streamlined protocol which utilises peptide pattern recognition (PPR). This protocol can theoretically be applied universally to generate accurate multiple sequence alignments and improve downstream phylogenetic analyses. Applied to the desaturases, the protocol generated the first detailed phylogenetic estimates for the family since 2003, which suggested they may have evolved from three functionally distinct desaturases and further, that desaturases evolved first in cyanobacteria. In addition to the phylogenetic outputs, we mapped PPR sequence motifs onto an X-ray protein structure to provide insights into biochemical function and demonstrate the complementarity of PPR and phylogenetics.
Collapse
Affiliation(s)
- Matthew Wilding
- CSIRO Land and Water, Black Mountain, Canberra, ACT 2601, Australia.
| | - Matthias Nachtschatt
- CSIRO Land and Water, Black Mountain, Canberra, ACT 2601, Australia; Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Robert Speight
- Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Colin Scott
- CSIRO Land and Water, Black Mountain, Canberra, ACT 2601, Australia
| |
Collapse
|