1
|
Demongeot J, Seligmann H. Evolution of small and large ribosomal RNAs from accretion of tRNA subelements. Biosystems 2022; 222:104796. [DOI: 10.1016/j.biosystems.2022.104796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/02/2022]
|
2
|
Seligmann H, Vuillerme N, Demongeot J. Unpredictable, Counter-Intuitive Geoclimatic and Demographic Correlations of COVID-19 Spread Rates. BIOLOGY 2021; 10:623. [PMID: 34356478 PMCID: PMC8301123 DOI: 10.3390/biology10070623] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/16/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
We present spread parameters for first and second waves of the COVID-19 pandemic for USA states, and for consecutive nonoverlapping periods of 20 days for the USA and 51 countries across the globe. We studied spread rates in the USA states and 51 countries, and analyzed associations between spread rates at different periods, and with temperature, elevation, population density and age. USA first/second wave spread rates increase/decrease with population density, and are uncorrelated with temperature and median population age. Spread rates are systematically inversely proportional to those estimated 80-100 days later. Ascending/descending phases of the same wave only partially explain this. Directions of correlations with factors such as temperature and median age flip. Changes in environmental trends of the COVID-19 pandemic remain unpredictable; predictions based on classical epidemiological knowledge are highly uncertain. Negative associations between population density and spread rates, observed in independent samples and at different periods, are most surprising. We suggest that systematic negative associations between spread rates 80-100 days apart could result from confinements selecting for greater contagiousness, a potential double-edged sword effect of confinements.
Collapse
Affiliation(s)
- Hervé Seligmann
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecom4Health, Faculty of Medicine, University Grenoble Alpes (UGA), 38700 La Tronche, France;
- The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem 91404, Israel;
| | - Nicolas Vuillerme
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecom4Health, Faculty of Medicine, University Grenoble Alpes (UGA), 38700 La Tronche, France;
| | - Jacques Demongeot
- The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem 91404, Israel;
| |
Collapse
|
3
|
Nesterov-Mueller A, Popov R, Seligmann H. Combinatorial Fusion Rules to Describe Codon Assignment in the Standard Genetic Code. Life (Basel) 2020; 11:life11010004. [PMID: 33374866 PMCID: PMC7824455 DOI: 10.3390/life11010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
We propose combinatorial fusion rules that describe the codon assignment in the standard genetic code simply and uniformly for all canonical amino acids. These rules become obvious if the origin of the standard genetic code is considered as a result of a fusion of four protocodes: Two dominant AU and GC protocodes and two recessive AU and GC protocodes. The biochemical meaning of the fusion rules consists of retaining the complementarity between cognate codons of the small hydrophobic amino acids and large charged or polar amino acids within the protocodes. The proto tRNAs were assembled in form of two kissing hairpins with 9-base and 10-base loops in the case of dominant protocodes and two 9-base loops in the case of recessive protocodes. The fusion rules reveal the connection between the stop codons, the non-canonical amino acids, pyrrolysine and selenocysteine, and deviations in the translation of mitochondria. Using fusion rules, we predicted the existence of additional amino acids that are essential for the development of the standard genetic code. The validity of the proposed partition of the genetic code into dominant and recessive protocodes is considered referring to state-of-the-art hypotheses. The formation of two aminoacyl-tRNA synthetase classes is compatible with four-protocode partition.
Collapse
Affiliation(s)
- Alexander Nesterov-Mueller
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany; (R.P.); (H.S.)
- Correspondence:
| | - Roman Popov
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany; (R.P.); (H.S.)
| | - Hervé Seligmann
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany; (R.P.); (H.S.)
- The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Laboratory AGEIS EA 7407, Team Tools for e-GnosisMedical & LabcomCNRS/UGA/OrangeLabs Telecoms4Health, Faculty of Medicine, Université Grenoble Alpes, F-38700 La Tronche, France
| |
Collapse
|
4
|
Demongeot J, Moreira A, Seligmann H. Negative CG dinucleotide bias: An explanation based on feedback loops between Arginine codon assignments and theoretical minimal RNA rings. Bioessays 2020; 43:e2000071. [PMID: 33319381 DOI: 10.1002/bies.202000071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 01/05/2023]
Abstract
Theoretical minimal RNA rings are candidate primordial genes evolved for non-redundant coding of the genetic code's 22 coding signals (one codon per biogenic amino acid, a start and a stop codon) over the shortest possible length: 29520 22-nucleotide-long RNA rings solve this min-max constraint. Numerous RNA ring properties are reminiscent of natural genes. Here we present analyses showing that all RNA rings lack dinucleotide CG (a mutable, chemically instable dinucleotide coding for Arginine), bearing a resemblance to known CG-depleted genomes. CG in "incomplete" RNA rings (not coding for all coding signals, with only 3-12 nucleotides) gradually decreases towards CG absence in complete, 22-nucleotide-long RNA rings. Presumably, feedback loops during RNA ring growth during evolution (when amino acid assignment fixed the genetic code) assigned Arg to codons lacking CG (AGR) to avoid CG. Hence, as a chemical property of base pairs, CG mutability restructured the genetic code, thereby establishing itself as genetically encoded biological information.
Collapse
Affiliation(s)
- Jacques Demongeot
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecom4Health, Faculty of Medicine, Université Grenoble Alpes, La Tronche, France
| | - Andrés Moreira
- Departamento de Informática, Universidad Técnica Federico Santa María, Santiago, Chile
| | - Hervé Seligmann
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecom4Health, Faculty of Medicine, Université Grenoble Alpes, La Tronche, France.,The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel.,Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
5
|
Demongeot J, Seligmann H. Codon assignment evolvability in theoretical minimal RNA rings. Gene 2020; 769:145208. [PMID: 33031892 DOI: 10.1016/j.gene.2020.145208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/28/2022]
Abstract
Genetic code codon-amino acid assignments evolve for 15 (AAA, AGA, AGG, ATA, CGG, CTA, CTG. CTC, CTT, TAA, TAG, TCA, TCG, TGA and TTA (GNN codons notably absent)) among 64 codons (23.4%) across the 31 genetic codes (NCBI list completed with recently suggested green algal mitochondrial genetic codes). Their usage in 25 theoretical minimal RNA rings is examined. RNA rings are designed in silico to code once over the shortest length for all 22 coding signals (start and stop codons and each amino acid according to the standard genetic code). Though designed along coding constraints, RNA rings resemble ancestral tRNA loops, assigning to each RNA ring a putative anticodon, a cognate amino acid and an evolutionary genetic code integration rank for that cognate amino acid. Analyses here show 1. biases against/for evolvable codons in the two first vs last thirds of RNA ring coding sequences, 2. RNA rings with evolvable codons have recent cognates, and 3. evolvable codon and cytosine numbers in RNA ring compositions are positively correlated. Applying alternative genetic codes to RNA rings designed for nonredundant coding according to the standard genetic code reveals unsuspected properties of the standard genetic code and of RNA rings, notably on codon assignment evolvability and the special role of cytosine in relation to codon assignment evolvability and of the genetic code's coding structure.
Collapse
Affiliation(s)
- Jacques Demongeot
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, F-38700 La Tronche, France
| | - Hervé Seligmann
- The National Natural History Collections, The Hebrew University of Jerusalem, 91404 Jerusalem, Israel.
| |
Collapse
|
6
|
Demongeot J, Seligmann H. Comparisons between small ribosomal RNA and theoretical minimal RNA ring secondary structures confirm phylogenetic and structural accretion histories. Sci Rep 2020; 10:7693. [PMID: 32376895 PMCID: PMC7203183 DOI: 10.1038/s41598-020-64627-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/01/2020] [Indexed: 12/16/2022] Open
Abstract
Ribosomal RNAs are complex structures that presumably evolved by tRNA accretions. Statistical properties of tRNA secondary structures correlate with genetic code integration orders of their cognate amino acids. Ribosomal RNA secondary structures resemble those of tRNAs with recent cognates. Hence, rRNAs presumably evolved from ancestral tRNAs. Here, analyses compare secondary structure subcomponents of small ribosomal RNA subunits with secondary structures of theoretical minimal RNA rings, presumed proto-tRNAs. Two independent methods determined different accretion orders of rRNA structural subelements: (a) classical comparative homology and phylogenetic reconstruction, and (b) a structural hypothesis assuming an inverted onion ring growth where the three-dimensional ribosome's core is most ancient and peripheral elements most recent. Comparisons between (a) and (b) accretions orders with RNA ring secondary structure scales show that recent rRNA subelements are: 1. more like RNA rings with recent cognates, indicating ongoing coevolution between tRNA and rRNA secondary structures; 2. less similar to theoretical minimal RNA rings with ancient cognates. Our method fits (a) and (b) in all examined organisms, more with (a) than (b). Results stress the need to integrate independent methods. Theoretical minimal RNA rings are potential evolutionary references for any sequence-based evolutionary analyses, independent of the focal data from that study.
Collapse
Affiliation(s)
- Jacques Demongeot
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, F-38700, La Tronche, France.
| | - Hervé Seligmann
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, F-38700, La Tronche, France
- The National Natural History Collections, The Hebrew University of Jerusalem, 91404, Jerusalem, Israel
| |
Collapse
|
7
|
Seligmann H. First arrived, first served: competition between codons for codon-amino acid stereochemical interactions determined early genetic code assignments. Naturwissenschaften 2020; 107:20. [PMID: 32367155 DOI: 10.1007/s00114-020-01676-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/10/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022]
Abstract
Stereochemical nucleotide-amino acid interactions, in the form of noncovalent nucleotide-amino acid interactions, potentially produced the genetic code's codon-amino acid assignments. Empirical estimates of single nucleotide-amino acid affinities on surfaces and in solution are used to test whether trinucleotide-amino acid affinities determined genetic code assignments pending the principle "first arrived, first served": presumed early amino acids have greater codon-amino acid affinities than ulterior ones. Here, these single nucleotide affinities are used to approximate all 64 × 20 trinucleotide-amino acid affinities. Analyses show that (1) on surfaces, genetic code codon-amino acid assignments tend to match high affinities for the amino acids that integrated earliest the genetic code (according to Wong's metabolic coevolution hypothesis between nucleotides and amino acids) and (2) in solution, the same principle holds for the anticodon-amino acid assignments. Affinity analyses match best genetic code assignments when assuming that trinucleotides competed for amino acids, rather than amino acids for trinucleotides. Codon-amino acid affinities stick better to genetic code assignments than anticodon-amino acid affinities. Presumably, two independent coding systems, on surfaces and in solution, converged, and formed the current translation system. Proto-translation on surfaces by direct codon-amino acid interactions without tRNA-like adaptors coadapted with a system emerging in solution by proto-tRNA anticodon-amino acid interactions. These systems assigned identical or similar cognates to codons on surfaces and to anticodons in solution. Results indicate that a prebiotic metabolism predated genetic code self-organization.
Collapse
Affiliation(s)
- Hervé Seligmann
- The National Natural History Collections, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel. .,Faculty of Medicine, Université Grenoble Alpes, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, F-38700, La Tronche, France.
| |
Collapse
|
8
|
Footprints of a Singular 22-Nucleotide RNA Ring at the Origin of Life. BIOLOGY 2020; 9:biology9050088. [PMID: 32344921 PMCID: PMC7285048 DOI: 10.3390/biology9050088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/06/2020] [Accepted: 04/19/2020] [Indexed: 11/17/2022]
Abstract
(1) Background: Previous experimental observations and theoretical hypotheses have been providing insight into a hypothetical world where an RNA hairpin or ring may have debuted as the primary informational and functional molecule. We propose a model revisiting the architecture of RNA-peptide interactions at the origin of life through the evolutionary dynamics of RNA populations. (2) Methods: By performing a step-by-step computation of the smallest possible hairpin/ring RNA sequences compatible with building up a variety of peptides of the primitive network, we inferred the sequence of a singular docosameric RNA molecule, we call the ALPHA sequence. Then, we searched for any relics of the peptides made from ALPHA in sequences deposited in the different public databases. (3) Results: Sequence matching between ALPHA and sequences from organisms among the earliest forms of life on Earth were found at high statistical relevance. We hypothesize that the frequency of appearance of relics from ALPHA sequence in present genomes has a functional necessity. (4) Conclusions: Given the fitness of ALPHA as a supportive sequence of the framework of all existing theories, and the evolution of Archaea and giant viruses, it is anticipated that the unique properties of this singular archetypal ALPHA sequence should prove useful as a model matrix for future applications, ranging from synthetic biology to DNA computing.
Collapse
|
9
|
Demongeot J, Seligmann H. Why Is AUG the Start Codon?: Theoretical Minimal RNA Rings: Maximizing Coded Information Biases 1st Codon for the Universal Initiation Codon AUG. Bioessays 2020; 42:e1900201. [PMID: 32227358 DOI: 10.1002/bies.201900201] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/09/2020] [Indexed: 01/04/2023]
Abstract
The rational design of theoretical minimal RNA rings predetermines AUG as the universal start codon. This design maximizes coded amino acid diversity over minimal sequence length, defining in silico theoretical minimal RNA rings, candidate ancestral genes. RNA rings code for 21 amino acids and a stop codon after three consecutive translation rounds, and form a degradation-delaying stem-loop hairpin. Twenty-five RNA rings match these constraints, ten start with the universal initiation codon AUG. No first codon bias exists among remaining RNA rings. RNA ring design predetermines AUG as initiation codon. This is the only explanation yet for AUG as start codon. RNA ring design determines additional RNA ring gene- and tRNA-like properties described previously, because it presumably mimics constraints on life's primordial RNAs.
Collapse
Affiliation(s)
- Jacques Demongeot
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecom4Health, Faculty of Medicine, Université Grenoble Alpes, La Tronche, F-38700, France
| | - Hervé Seligmann
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecom4Health, Faculty of Medicine, Université Grenoble Alpes, La Tronche, F-38700, France.,The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, 91404, Israel
| |
Collapse
|
10
|
Demongeot J, Seligmann H. Deamination gradients within codons after 1<->2 position swap predict amino acid hydrophobicity and parallel β-sheet conformational preference. Biosystems 2020; 191-192:104116. [PMID: 32081715 DOI: 10.1016/j.biosystems.2020.104116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/04/2019] [Accepted: 02/10/2020] [Indexed: 12/16/2022]
Abstract
Deaminations C->T and A->G are frequent mutations producing nucleotide content gradients across genomes proportional to singlestrandedness during replication/transcription. Hence, within single codons, deamination risks increase from first to third codon positions, while second codon positions are functionally most crucial. Here genetic codes are analyzed assuming that after anticodons protected codons from deaminations, first and second codon positions swapped (N2N1N3->N1N2N3), with lowest deamination risks for N2 in presumed primitive N2N1N3 codons. N2N1N3, not standard N1N2N3, codon structure minimizes deaminations inversely proportionally to cognate amino acid hydrophobicity and parallel betasheet conformational preference. For N1N2N3, deamination minimization increases with genetic code integration order of cognate amino acids: during the presumed N2N1N3->N1N2N3 codon structure transition, protein synthesis combined direct codon-amino acid interactions for late amino acids and tRNA-based translation for early amino acids. Hence N2N1N3 codons would correspond to tRNA-free translation by spontaneous codon-amino acid affinities, and tRNA-mediated translation presumably caused N2N1N3->N1N2N3 swaps. Results show that rational, not arbitrary rules link codon and amino acid structures. Some analyses detect mitochondrial RNAs and peptides in public data corresponding to systematic position swaps, suggesting occasional swapping polymerase activity.
Collapse
Affiliation(s)
- Jacques Demongeot
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, F-38700, La Tronche, France.
| | - Hervé Seligmann
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, F-38700, La Tronche, France; The National Natural History Collections, The Hebrew University of Jerusalem, 91404, Jerusalem, Israel.
| |
Collapse
|
11
|
RNA Rings Strengthen Hairpin Accretion Hypotheses for tRNA Evolution: A Reply to Commentaries by Z.F. Burton and M. Di Giulio. J Mol Evol 2020; 88:243-252. [PMID: 32025759 DOI: 10.1007/s00239-020-09929-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/07/2020] [Indexed: 01/08/2023]
Abstract
Theoretical minimal RNA ring design ensures coding over the shortest length once for each coding signal (start and stop codons, and each amino acid) and their hairpin configuration. These constraints define 25 RNA rings which surprisingly resemble ancestral tRNA loops, suggesting commonalities between RNA ring design and proto-tRNAs. RNA rings share several other properties with tRNAs, suggesting that primordial RNAs were multifunctional peptide coding sequences and structural RNAs. Two hypotheses, respectively, by M. Di Giulio and Z.F. Burton, derived from cloverleaf structural symmetries suggest that two and three, respectively, stem-loop hairpins agglutinated into tRNAs. Their authors commented that their respective structure-based hypotheses reflect better tRNA structure than RNA rings. Unlike these hypotheses, RNA ring design uses no tRNA-derived information, rendering model predictive power comparisons senseless. Some analyses of RNA ring primary and secondary structures stress RNA ring splicing in their predicted anticodon's midst, indicating ancestrality of split tRNAs, as the two-piece model predicts. Advancement of knowledge, rather than of specific hypotheses, gains foremost by examining independent hypotheses for commonalities, and only secondarily for discordances. RNA rings mimick ancestral biomolecules including tRNAs, and their evolution, and constitute an interesting synthetic system for early prebiotic evolution tests/simulations.
Collapse
|
12
|
Demongeot J, Seligmann H. Accretion history of large ribosomal subunits deduced from theoretical minimal RNA rings is congruent with histories derived from phylogenetic and structural methods. Gene 2020; 738:144436. [PMID: 32027954 DOI: 10.1016/j.gene.2020.144436] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/24/2020] [Accepted: 02/01/2020] [Indexed: 12/17/2022]
Abstract
Accretions of tRNAs presumably formed the large complex ribosomal RNA structures. Similarities of tRNA secondary structures with rRNA secondary structures increase with the integration order of their cognate amino acid in the genetic code, indicating tRNA evolution towards rRNA-like structures. Here analyses rank secondary structure subelements of three large ribosomal RNAs (Prokaryota: Archaea: Thermus thermophilus; Bacteria: Escherichia coli; Eukaryota: Saccharomyces cerevisiae) in relation to their similarities with secondary structures formed by presumed proto-tRNAs, represented by 25 theoretical minimal RNA rings. These ranks are compared to those derived from two independent methods (ranks provide a relative evolutionary age to the rRNA substructure), (a) cladistic phylogenetic analyses and (b) 3D-crystallography where core subelements are presumed ancient and peripheral ones recent. Comparisons of rRNA secondary structure subelements with RNA ring secondary structures show congruence between ranks deduced by this method and both (a) and (b) (more with (a) than (b)), especially for RNA rings with predicted ancient cognate amino acid. Reconstruction of accretion histories of large rRNAs will gain from adequately integrating information from independent methods. Theoretical minimal RNA rings, sequences deterministically designed in silico according to specific coding constraints, might produce adequate scales for prebiotic and early life molecular evolution.
Collapse
Affiliation(s)
- Jacques Demongeot
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, F-38700 La Tronche, France.
| | - Hervé Seligmann
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, F-38700 La Tronche, France; The National Natural History Collections, The Hebrew University of Jerusalem, 91404 Jerusalem, Israel.
| |
Collapse
|
13
|
Demongeot J, Seligmann H. The primordial tRNA acceptor stem code from theoretical minimal RNA ring clusters. BMC Genet 2020; 21:7. [PMID: 31973715 PMCID: PMC6979358 DOI: 10.1186/s12863-020-0812-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/13/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Theoretical minimal RNA rings code by design over the shortest length once for each of the 20 amino acids, a start and a stop codon, and form stem-loop hairpins. This defines at most 25 RNA rings of 22 nucleotides. As a group, RNA rings mimick numerous prebiotic and early life biomolecular properties: tRNAs, deamination gradients and replication origins, emergence of codon preferences for the natural circular code, and contents of early protein coding genes. These properties result from the RNA ring's in silico design, based mainly on coding nonredundancy among overlapping translation frames, as the genetic code's codon-amino acid assignments determine. RNA rings resemble ancestral tRNAs, defining RNA ring anticodons and corresponding cognate amino acids. Surprisingly, all examined RNA ring properties coevolve with genetic code integration ranks of RNA ring cognates, as if RNA rings mimick prebiotic and early life evolution. METHODS Distances between RNA rings were calculated using different evolutionary models. Associations between these distances and genetic code evolutionary hypotheses detect evolutionary models best describing RNA ring diversification. RESULTS Here pseudo-phylogenetic analyses of RNA rings produce clusters corresponding to the primordial code in tRNA acceptor stems, more so when substitution matrices from neutrally evolving pseudogenes are used rather than from functional protein coding genes reflecting selection for conserving amino acid properties. CONCLUSIONS Results indicate RNA rings with recent cognates evolved from those with early cognates. Hence RNA rings, as designed by the genetic code's structure, simulate tRNA stem evolution and prebiotic history along neutral chemistry-driven mutation regimes.
Collapse
Affiliation(s)
- Jacques Demongeot
- Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, Université Grenoble Alpes, F-38700 La Tronche, France
| | - Hervé Seligmann
- Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, Université Grenoble Alpes, F-38700 La Tronche, France
- The National Natural History Collections, The Hebrew University of Jerusalem, 91404 Jerusalem, Israel
| |
Collapse
|
14
|
Pentamers with Non-redundant Frames: Bias for Natural Circular Code Codons. J Mol Evol 2020; 88:194-201. [DOI: 10.1007/s00239-019-09925-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
|
15
|
The Uroboros Theory of Life's Origin: 22-Nucleotide Theoretical Minimal RNA Rings Reflect Evolution of Genetic Code and tRNA-rRNA Translation Machineries. Acta Biotheor 2019; 67:273-297. [PMID: 31388859 DOI: 10.1007/s10441-019-09356-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023]
Abstract
Theoretical minimal RNA rings attempt to mimick life's primitive RNAs. At most 25 22-nucleotide-long RNA rings code once for each biotic amino acid, a start and a stop codon and form a stem-loop hairpin, resembling consensus tRNAs. We calculated, for each RNA ring's 22 potential splicing positions, similarities of predicted secondary structures with tRNA vs. rRNA secondary structures. Assuming rRNAs partly derived from tRNA accretions, we predict positive associations between relative secondary structure similarities with rRNAs over tRNAs and genetic code integration orders of RNA ring anticodon cognate amino acids. Analyses consider for each secondary structure all nucleotide triplets as potential anticodon. Anticodons for ancient, chemically inert cognate amino acids are most frequent in the 25 RNA rings. For RNA rings with primordial cognate amino acids according to tRNA-homology-derived anticodons, tRNA-homology and coding sequences coincide, these are separate for predicted cognate amino acids that presumably integrated late the genetic code. RNA ring secondary structure similarity with rRNA over tRNA secondary structures associates best with genetic code integration orders of anticodon cognate amino acids when assuming split anticodons (one and two nucleotides at the spliced RNA ring 5' and 3' extremities, respectively), and at predicted anticodon location in the spliced RNA ring's midst. Results confirm RNA ring homologies with tRNAs and CDs, ancestral status of tRNA half genes split at anticodons, the tRNA-rRNA axis of RNA evolution, and that single theoretical minimal RNA rings potentially produce near-complete proto-tRNA sets. Hence genetic code pre-existence determines 25 short circular gene- and tRNA-like RNAs. Accounting for each potential splicing position, each RNA ring potentially translates most amino acids, realistically mimicks evolution of the tRNA-rRNA translation machinery. These RNA rings 'of creation' remind the uroboros' (snake biting its tail) symbolism for creative regeneration.
Collapse
|
16
|
|
17
|
Seligmann H. Syntenies Between Cohosted Mitochondrial, Chloroplast, and Phycodnavirus Genomes: Functional Mimicry and/or Common Ancestry? DNA Cell Biol 2019; 38:1257-1268. [DOI: 10.1089/dna.2019.4858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hervé Seligmann
- The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
18
|
Demongeot J, Seligmann H. Theoretical minimal RNA rings designed according to coding constraints mimic deamination gradients. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2019; 106:44. [DOI: 10.1007/s00114-019-1638-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 11/27/2022]
|
19
|
Demongeot J, Norris V. Emergence of a "Cyclosome" in a Primitive Network Capable of Building "Infinite" Proteins. Life (Basel) 2019; 9:E51. [PMID: 31216720 PMCID: PMC6617141 DOI: 10.3390/life9020051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/08/2019] [Accepted: 06/13/2019] [Indexed: 01/02/2023] Open
Abstract
We argue for the existence of an RNA sequence, called the AL (for ALpha) sequence, which may have played a role at the origin of life; this role entailed the AL sequence helping generate the first peptide assemblies via a primitive network. These peptide assemblies included "infinite" proteins. The AL sequence was constructed on an economy principle as the smallest RNA ring having one representative of each codon's synonymy class and capable of adopting a non-functional but nevertheless evolutionarily stable hairpin form that resisted denaturation due to environmental changes in pH, hydration, temperature, etc. Long subsequences from the AL ring resemble sequences from tRNAs and 5S rRNAs of numerous species like the proteobacterium, Rhodobacter sphaeroides. Pentameric subsequences from the AL are present more frequently than expected in current genomes, in particular, in genes encoding some of the proteins associated with ribosomes like tRNA synthetases. Such relics may help explain the existence of universal sequences like exon/intron frontier regions, Shine-Dalgarno sequence (present in bacterial and archaeal mRNAs), CRISPR and mitochondrial loop sequences.
Collapse
Affiliation(s)
- Jacques Demongeot
- Faculty of Medicine, Université Grenoble Alpes, AGEIS EA 7407 Tools for e-Gnosis Medical, 38700 La Tronche, France.
| | - Vic Norris
- Laboratory of Microbiology Signals and Microenvironment, Université de Rouen, 76821 Mont-Saint-Aignan CEDEX, France.
| |
Collapse
|
20
|
Seligmann H. Localized Context-Dependent Effects of the "Ambush" Hypothesis: More Off-Frame Stop Codons Downstream of Shifty Codons. DNA Cell Biol 2019; 38:786-795. [PMID: 31157984 DOI: 10.1089/dna.2019.4725] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ambush hypothesis speculates that off-frame stop codons increase translational efficiency after ribosomal frameshifts by stopping early frameshifted translation. Some evidences fit this hypothesis: (1) synonymous codon usages increase with their potential contribution to off-frame stops; (2) the genetic code assigns frequent amino acids to codon families contributing to off-frame stops; (3) positive biases for off-frame stops (AT rich) occur despite adverse nucleotide (GC) biases; and (4) mitochondrial off-frame stop codon densities increase with ribosomal structural instability, potential proxy of frameshift frequencies. In this study, analyses of vertebrate mitogenes and tRNA synthetase genes from all superkingdoms and viruses test a new prediction of the ambush hypothesis: sequences immediately downstream of frameshift-inducing homopolymer codons (AAA, CCC, GGG, and TTT) are off-frame stop rich. Codons immediately downstream of homopolymer codons form more than average off-frame stops, biases are stronger than for corresponding upstream distances and for any other group of synonymous codons. Sequences downstream of that high-density region are off-frame stop depleted. This decrease suggests that off-frame stops, combined with suppressor tRNAs regulate translation of overlapping coding sequences. Results show the predictive power of the ambush hypothesis, from macroevolutionary (genetic code structure) to detailed gene sequence anatomy.
Collapse
Affiliation(s)
- Hervé Seligmann
- The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
21
|
Demongeot J, Seligmann H. Theoretical minimal RNA rings recapitulate the order of the genetic code's codon-amino acid assignments. J Theor Biol 2019; 471:108-116. [DOI: 10.1016/j.jtbi.2019.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/19/2018] [Accepted: 03/28/2019] [Indexed: 12/21/2022]
|
22
|
Demongeot J, Seligmann H. Bias for 3'-Dominant Codon Directional Asymmetry in Theoretical Minimal RNA Rings. J Comput Biol 2019; 26:1003-1012. [PMID: 31120344 DOI: 10.1089/cmb.2018.0256] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aminoacyl tRNA synthetases ligate tRNAs specifically with their cognate amino acid. These synthetases are among life's earliest proteins, class II tRNA synthetases (cognates A, D, F, G, H, K, N, P, S, and T) presumably preceding class I tRNA synthetases (cognates C, E, I, L, M, Q, R, V, W, and Y). Classification of codons into palindromic (structure XYX), 5'-dominant (YXX), and 3'-dominant (XXY) (Codon Directional Asymmetry [CDA]) shows that class II tRNA synthetases aminoacylate amino acids associated with XXY. Our working hypothesis expects bias for XXY codons in primordial RNAs, such as theoretical minimal RNA rings, designed in silico to mimic life's earliest RNAs. Twenty-five RNA rings have been computed, which code over a minimal length (22 nucleotides) for a start codon, stop codon, and one and only one codon for each of the 20 amino acids, and form stem-loop hairpins preventing degradation; these 25 minimal RNAs are the only ones matching these constraints and they seem homologous to consensus tRNA sequences. This similarity defined candidate RNA ring anticodons and corresponding cognate amino acids. Here, analyses of RNA ring codon contents confirm bias for XXY codons in 13 among 14 RNA rings with unequal XXY and YXX codon numbers. This bias increases with the genetic code integration order of the RNA ring's cognate amino acid across and within tRNA synthetase classes, suggesting that evolutionary processes, and not physicochemical constraints, produced the association between CDA and tRNA synthetase classes. The self-referential hypothesis for genetic code origin, a very complete genetic code evolutionary hypothesis integrating many translational machinery components, predicts best among genetic code evolutionary hypotheses CDA biases in RNA rings. The RNA rings' simple design inadvertently reproduces CDAs predicted by the genetic code's structure, confirming theoretical minimal RNA rings as good proxies for life's earliest RNAs.
Collapse
Affiliation(s)
- Jacques Demongeot
- Laboratory AGEIS EA 7407, Faculty of Medicine, Team Tools for e-Gnosis Medical, Université Grenoble Alpes, La Tronche, France
| | - Hervé Seligmann
- The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
23
|
Demongeot J, Seligmann H. More Pieces of Ancient than Recent Theoretical Minimal Proto-tRNA-Like RNA Rings in Genes Coding for tRNA Synthetases. J Mol Evol 2019; 87:152-174. [DOI: 10.1007/s00239-019-09892-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/22/2019] [Indexed: 12/19/2022]
|
24
|
Seligmann H. Giant viruses: spore‐like missing links betweenRickettsiaand mitochondria? Ann N Y Acad Sci 2019; 1447:69-79. [DOI: 10.1111/nyas.14022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Hervé Seligmann
- The National Natural History Collectionsthe Hebrew University of Jerusalem Jerusalem Israel
| |
Collapse
|
25
|
Giant viruses as protein-coated amoeban mitochondria? Virus Res 2018; 253:77-86. [DOI: 10.1016/j.virusres.2018.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 01/18/2023]
|