1
|
Moriwaki H, Kawashima Y, Watanabe C, Kamisaka K, Okiyama Y, Fukuzawa K, Honma T. FMOe: Preprocessing and Visualizing Package of the Fragment Molecular Orbital Method for Molecular Operating Environment and Its Applications in Covalent Ligand and Metalloprotein Analyses. J Chem Inf Model 2024; 64:6927-6937. [PMID: 39235048 PMCID: PMC11505893 DOI: 10.1021/acs.jcim.4c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
The fragment molecular orbital (FMO) method is an efficient quantum chemical calculation technique for large biomolecules, dividing each into smaller fragments and providing interfragment interaction energies (IFIEs) that support our understanding of molecular recognition. The ab initio fragment MO method (ABINIT-MP), an FMO processing program, can automatically divide typical proteins and nucleic acids. In contrast, small molecules such as ligands and heterosystems must be manually divided. Thus, we developed a graphical user interface to easily handle such manual fragmentation as a library for the Molecular Operating Environment (MOE) that preprocesses and visualizes FMO calculations. We demonstrated fragmentation with IFIE analyses for the two following cases: (1) covalent cysteine-ligand bonding inside the SARS-CoV-2 main protease (Mpro) and nirmatrelvir (Paxlovid) complex and (2) the metal coordination inside a zinc-bound cyclic peptide. IFIE analysis successfully identified the key amino acid residues for the molecular recognition of nirmatrelvir with Mpro and the details of their interactions (e.g., hydrogen bonds and CH/π interactions) via ligand fragmentation of functional group units. In metalloproteins, we found an efficient and accurate scheme for the fragmentation of Zn2+ ions with four histidines coordinated to the ion. FMOe simplifies manual fragmentation, allowing users to experiment with various fragmentation patterns and perform in-depth IFIE analysis with high accuracy. In the future, our findings will provide valuable insight into complicated cases, such as ligand fragmentation in modality drug discovery, especially for medium-sized molecules and metalloprotein fragmentation around metals.
Collapse
Affiliation(s)
- Hirotomo Moriwaki
- Center
for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yusuke Kawashima
- Department
of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Chiduru Watanabe
- Center
for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- JST
PRESTO, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Kikuko Kamisaka
- Center
for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshio Okiyama
- Department
of Computational Science, Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Kaori Fukuzawa
- Department
of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Graduate
School of Pharmaceutical Sciences, Osaka
University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Teruki Honma
- Center
for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
2
|
Gupta AK, Maier S, Thapa B, Raghavachari K. Toward Post-Hartree-Fock Accuracy for Protein-Ligand Affinities Using the Molecules-in-Molecules Fragmentation-Based Method. J Chem Theory Comput 2024; 20:2774-2785. [PMID: 38530869 DOI: 10.1021/acs.jctc.3c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The complexity and size of large molecular systems, such as protein-ligand complexes, pose computational challenges for accurate post-Hartree-Fock calculations. This study delivers a thorough benchmarking of the Molecules-in-Molecules (MIM) method, presenting a clear and accessible strategy for layer/theory selections in post-Hartree-Fock computations on substantial molecular systems, notably protein-ligand complexes. An approach is articulated, enabling augmented computational efficiency by strategically canceling out common subsystem energy terms between complexes and proteins within the supermolecular equation. Employing DLPNO-based post-Hartree-Fock methods in conjunction with the three-layer MIM method (MIM3), this study demonstrates the achievement of protein-ligand binding energies with remarkable accuracy (errors <1 kcal mol-1), while significantly reducing computational costs. Furthermore, noteworthy correlations between theoretically computed interaction energies and their experimental equivalents were observed, with R2 values of approximately 0.90 and 0.78 for CDK2 and BZT-ITK sets, respectively, thus validating the efficacy of the MIM method in calculating binding energies. By highlighting the crucial role of diffuse or small Pople-style basis sets in the middle layer for reducing energy errors, this work provides valuable insights and practical methodologies for interaction energy computations in large molecular complexes and opens avenues for their application across a diverse range of molecular systems.
Collapse
Affiliation(s)
- Ankur K Gupta
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Sarah Maier
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Bishnu Thapa
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
3
|
Khan A, Zia K, Khan SA, Khalid A, Abdalla AN, Bibi M, Ul-Haq Z. Identification of IL-2 inducible tyrosine kinase inhibitors by quantum mechanics and ligand based virtual screening approaches. J Biomol Struct Dyn 2024; 42:3630-3640. [PMID: 37216319 DOI: 10.1080/07391102.2023.2214220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Interleukin-2-inducible T-cell kinase (ITK) is a crucial intracellular signaling mediator in normal and malignant T-cells and natural killer cells. Selective inhibition of ITK might be useful for treating a variety of disorders including; autoimmune, inflammatory, and neoplastic disorders. Over the past two decades, the clinical management of ITK inhibitors has progressed dramatically. So far, specific inhibitor with no off-target effects against ITK is available. Herein, we aim to discover potential virtual hits to fasten the process of drug design and development against ITK. In this regard, the key chemical characteristics of ITK inhibitors were identified using ligand-based pharmacophore modeling. The validated pharmacophore comprises one hydrogen bond donor and three hydrogen bond acceptors and was utilized as a 3D query in virtual screening using ZINC, Covalent, and in-house databases. A total of 12 hit compounds were chosen on the basis of their critical interactions with the significant amino acids of ITK. The orbital energies such as HOMO and LUMO of the hit compounds were calculated to evaluate the inhibitor's potencies. Further, molecular dynamics simulation demonstrated the stability of ITK upon binding of selected virtual hits. Binding energy using the MMGBSA method showed the potential binding affinity of all the hits with ITK. The research identifies key chemical characteristics with geometric restrictions that lead to ITK inhibition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alamgir Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Komal Zia
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Salman Ali Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- National Center for Research, Medicinal and Aromatic Plants Research Institute, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia
| | - Marium Bibi
- Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Karachi, Pakistan
| | - Zaheer Ul-Haq
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
4
|
Shino A, Otsu M, Imai K, Fukuzawa K, Morishita EC. Probing RNA-Small Molecule Interactions Using Biophysical and Computational Approaches. ACS Chem Biol 2023; 18:2368-2376. [PMID: 37856793 PMCID: PMC10662358 DOI: 10.1021/acschembio.3c00287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/30/2023] [Indexed: 10/21/2023]
Abstract
Interest in small molecules that target RNA is flourishing, and the expectation set on them to treat diseases with unmet medical needs is high. However, several challenges remain, including difficulties in selecting suitable tools and establishing workflows for their discovery. In this context, we optimized experimental and computational approaches that were previously employed for the protein targets. Here, we demonstrate that a fluorescence-based assay can be effectively used to screen small molecule libraries for their ability to bind and stabilize an RNA stem-loop. Our screen identified several fluoroquinolones that bind to the target stem-loop. We further probed their interactions with the target using biolayer interferometry, isothermal titration calorimetry (ITC), and nuclear magnetic resonance spectroscopy. The results of these biophysical assays suggest that the fluoroquinolones bind the target in a similar manner. Armed with this knowledge, we built models for the complexes of the fluoroquinolones and the RNA target. Then, we performed fragment molecular orbital (FMO) calculations to dissect the interactions between the fluoroquinolones and the RNA. We found that the binding free energies obtained from the ITC experiments correlated strongly with the interaction energies calculated by FMO. Finally, we designed fluoroquinolone analogues and performed FMO calculations to predict their binding free energies. Taken together, the results of this study support the importance of conducting orthogonal assays in binding confirmation and compound selection and demonstrate the usefulness of FMO calculations in the rational design of RNA-targeted small molecules.
Collapse
Affiliation(s)
- Amiu Shino
- Basic
Research Division, Veritas In Silico Inc., Shinagawa, Tokyo 141-0031, Japan
| | - Maina Otsu
- Basic
Research Division, Veritas In Silico Inc., Shinagawa, Tokyo 141-0031, Japan
| | - Koji Imai
- Basic
Research Division, Veritas In Silico Inc., Shinagawa, Tokyo 141-0031, Japan
| | - Kaori Fukuzawa
- Graduate
School of Pharmaceutical Sciences, Osaka
University, Suita, Osaka 565-0871, Japan
- School
of Pharmacy and Pharmaceutical Sciences, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| | | |
Collapse
|
5
|
Hill TD, Basnet S, Lepird HH, Rightnowar BW, Moran SD. Anisotropic dynamics of an interfacial enzyme active site observed using tethered substrate analogs and ultrafast 2D IR spectroscopy. J Chem Phys 2023; 159:165101. [PMID: 37870142 PMCID: PMC10597647 DOI: 10.1063/5.0167991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023] Open
Abstract
Enzymes accelerate the rates of biomolecular reactions by many orders of magnitude compared to bulk solution, and it is widely understood that this catalytic effect arises from a combination of polar pre-organization and electrostatic transition state stabilization. A number of recent reports have also implicated ultrafast (femtosecond-picosecond) timescale motions in enzymatic activity. However, complications arising from spatially-distributed disorder, the occurrence of multiple substrate binding modes, and the influence of hydration dynamics on solvent-exposed active sites still confound many experimental studies. Here we use ultrafast two-dimensional infrared (2D IR) spectroscopy and covalently-tethered substrate analogs to examine dynamical properties of the promiscuous Pyrococcus horikoshii ene-reductase (PhENR) active site in two binding configurations mimicking proposed "inactive" and "reactive" Michaelis complexes. Spectral diffusion measurements of aryl-nitrile substrate analogs reveal an end-to-end tradeoff between fast (sub-ps) and slow (>5 ps) motions. Fermi resonant aryl-azide analogs that sense interactions of coupled oscillators are described. Lineshape and quantum beat analyses of these probes reveal characteristics that correlate with aryl-nitrile frequency fluctuation correlation functions parameters, demonstrating that this anisotropy is an intrinsic property of the water-exposed active site, where countervailing gradients of fast dynamics and disorder in the reactant ground state are maintained near the hydration interface. Our results suggest several plausible factors leading to state-selective rate enhancement and promiscuity in PhENR. This study also highlights a strategy to detect perturbations to vibrational modes outside the transparent window of the mid-IR spectrum, which may be extended to other macromolecular systems.
Collapse
Affiliation(s)
| | - Sunil Basnet
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| | - Hannah H. Lepird
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| | - Blaze W. Rightnowar
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| | - Sean D. Moran
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| |
Collapse
|
6
|
Watanabe C, Tanaka S, Okiyama Y, Yuki H, Ohyama T, Kamisaka K, Takaya D, Fukuzawa K, Honma T. Quantum Chemical Interaction Analysis between SARS-CoV-2 Main Protease and Ensitrelvir Compared with Its Initial Screening Hit. J Phys Chem Lett 2023; 14:3609-3620. [PMID: 37023394 PMCID: PMC10081834 DOI: 10.1021/acs.jpclett.2c03768] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
A non-covalent oral drug targeting SARS-CoV-2 main protease (Mpro), ensitrelvir (Xocova), has been developed using structure-based drug design (SBDD). To elucidate the factors responsible for enhanced inhibitory activities from an in silico screening hit compound to ensitrelvir, we analyzed the interaction energies of the inhibitors with each residue of Mpro using fragment molecular orbital (FMO) calculations. This analysis reveals that functional group conversion for P1' and P1 parts in the inhibitors increases the strength of existing interactions with Mpro and also provides novel interactions for ensitrelvir; the associated changes in the conformation of Mpro induce further interactions for ensitrelvir in other parts, including hydrogen bonds, a halogen bond, and π-orbital interactions. Thus, we illuminate the promising strategies of SBDD for leading ensitrelvir to get higher activity against Mpro by elucidating microscopic interactions through FMO-based analysis. These detailed mechanism findings, including water cross-linkings, will help to design novel inhibitors in SBDD.
Collapse
Affiliation(s)
- Chiduru Watanabe
- Center for Biosystems Dynamics Research,
RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa
230-0045, Japan
| | - Shigenori Tanaka
- Department of Computational Science, Graduate School
of System Informatics, Kobe University, 1-1 Rokkodai, Nada-ku,
Kobe, Hyogo 657-8501, Japan
| | - Yoshio Okiyama
- Department of Computational Science, Graduate School
of System Informatics, Kobe University, 1-1 Rokkodai, Nada-ku,
Kobe, Hyogo 657-8501, Japan
| | - Hitomi Yuki
- Center for Biosystems Dynamics Research,
RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa
230-0045, Japan
| | - Tatsuya Ohyama
- Frontier Institute for Biomolecular Engineering Research
(FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Kobe
650-0047, Japan
| | - Kikuko Kamisaka
- Center for Biosystems Dynamics Research,
RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa
230-0045, Japan
| | - Daisuke Takaya
- Graduate School of Pharmaceutical Sciences,
Osaka University,1-6 Yamadaoka, Suita, Osaka 565-0871,
Japan
| | - Kaori Fukuzawa
- Graduate School of Pharmaceutical Sciences,
Osaka University,1-6 Yamadaoka, Suita, Osaka 565-0871,
Japan
| | - Teruki Honma
- Center for Biosystems Dynamics Research,
RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa
230-0045, Japan
| |
Collapse
|
7
|
Structural and Functional Characterization of One Unclassified Glutathione S-Transferase in Xenobiotic Adaptation of Leptinotarsa decemlineata. Int J Mol Sci 2021; 22:ijms222111921. [PMID: 34769352 PMCID: PMC8584303 DOI: 10.3390/ijms222111921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 11/18/2022] Open
Abstract
Arthropod Glutathione S-transferases (GSTs) constitute a large family of multifunctional enzymes that are mainly associated with xenobiotic or stress adaptation. GST-mediated xenobiotic adaptation takes place through direct metabolism or sequestration of xenobiotics, and/or indirectly by providing protection against oxidative stress induced by xenobiotic exposure. To date, the roles of GSTs in xenobiotic adaptation in the Colorado potato beetle (CPB), a notorious agricultural pest of plants within Solanaceae, have not been well studied. Here, we functionally expressed and characterized an unclassified-class GST, LdGSTu1. The three-dimensional structure of the LdGSTu1 was solved with a resolution up to 1.8 Å by X-ray crystallography. The signature motif VSDGPPSL was identified in the “G-site”, and it contains the catalytically active residue Ser14. Recombinant LdGSTu1 was used to determine enzyme activity and kinetic parameters using 1-chloro-2, 4-dinitrobenzene (CDNB), GSH, p-nitrophenyl acetate (PNA) as substrates. The enzyme kinetic parameters and enzyme-substrate interaction studies demonstrated that LdGSTu1 could catalyze the conjugation of GSH to both CDNB and PNA, with a higher turnover number for CDNB than PNA. The LdGSTu1 enzyme inhibition assays demonstrated that the enzymatic conjugation of GSH to CDNB was inhibited by multiple pesticides, suggesting a potential function of LdGSTu1 in xenobiotic adaptation.
Collapse
|
8
|
Naderizadeh B, Bayat M, Ranjbaran M, Salehzadeh S. Towards computational prediction of anti-cancer activity: Making connection between IC50 values and metal–ligand interaction energies in some NHC complexes of groups 10 and 11. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Kawashima Y, Mori N, Kawashita N, Tian YS, Takagi T. Combining self-organizing maps and hierarchical clustering for protein–ligand interaction analysis in post-fragment molecular orbital calculation. CHEM-BIO INFORMATICS JOURNAL 2021. [DOI: 10.1273/cbij.21.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yusuke Kawashima
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Natsumi Mori
- School of Pharmaceutical Sciences, Osaka University
| | | | - Yu-Shi Tian
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Tatsuya Takagi
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
10
|
Takaya D, Watanabe C, Nagase S, Kamisaka K, Okiyama Y, Moriwaki H, Yuki H, Sato T, Kurita N, Yagi Y, Takagi T, Kawashita N, Takaba K, Ozawa T, Takimoto-Kamimura M, Tanaka S, Fukuzawa K, Honma T. FMODB: The World's First Database of Quantum Mechanical Calculations for Biomacromolecules Based on the Fragment Molecular Orbital Method. J Chem Inf Model 2021; 61:777-794. [PMID: 33511845 DOI: 10.1021/acs.jcim.0c01062] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We developed the world's first web-based public database for the storage, management, and sharing of fragment molecular orbital (FMO) calculation data sets describing the complex interactions between biomacromolecules, named FMO Database (https://drugdesign.riken.jp/FMODB/). Each entry in the database contains relevant background information on how the data was compiled as well as the total energy of each molecular system and interfragment interaction energy (IFIE) and pair interaction energy decomposition analysis (PIEDA) values. Currently, the database contains more than 13 600 FMO calculation data sets, and a comprehensive search function implemented at the front-end. The procedure for selecting target proteins, preprocessing the experimental structures, construction of the database, and details of the database front-end were described. Then, we demonstrated a use of the FMODB by comparing IFIE value distributions of hydrogen bond, ion-pair, and XH/π interactions obtained by FMO method to those by molecular mechanics approach. From the comparison, the statistical analysis of the data provided standard reference values for the three types of interactions that will be useful for determining whether each interaction in a given system is relatively strong or weak compared to the interactions contained within the data in the FMODB. In the final part, we demonstrate the use of the database to examine the contribution of halogen atoms to the binding affinity between human cathepsin L and its inhibitors. We found that the electrostatic term derived by PIEDA greatly correlated with the binding affinities of the halogen containing cathepsin L inhibitors, indicating the importance of QM calculation for quantitative analysis of halogen interactions. Thus, the FMO calculation data in FMODB will be useful for conducting statistical analyses to drug discovery, for conducting molecular recognition studies in structural biology, and for other studies involving quantum mechanics-based interactions.
Collapse
Affiliation(s)
- Daisuke Takaya
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Chiduru Watanabe
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,JST PRESTO, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Shunpei Nagase
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kikuko Kamisaka
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshio Okiyama
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Hirotomo Moriwaki
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hitomi Yuki
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tomohiro Sato
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Noriyuki Kurita
- Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Yoichiro Yagi
- Graduate School of Engineering, Okayama University of Science, Okayama, 1-1 Ridai-cho, Okayama 700-0005, Japan
| | - Tatsuya Takagi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Norihito Kawashita
- Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Kenichiro Takaba
- Pharmaceutical Research Center, Laboratory for Medicinal Chemistry, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Tomonaga Ozawa
- Kissei Pharmaceutical Co., LTD., Frontier Technology Research Lab., Research Div. 4365-1 Hotaka Kashiwabara, Azumino, Nagano 399-8304, Japan
| | - Midori Takimoto-Kamimura
- Teijin Institute for Biomedical Research, Teijin Pharma Ltd., 4-3-2 Asahigaoka, Hino, Tokyo 191-8512, Japan
| | - Shigenori Tanaka
- Graduate School of System Informatics, Department of Computational Science, Kobe University, 1-1 Rokkodai, Kobe, Hyogo 657-8501, Japan
| | - Kaori Fukuzawa
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan.,Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Sendai, Miyagi 980-8579, Japan
| | - Teruki Honma
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
11
|
Akisawa K, Hatada R, Okuwaki K, Mochizuki Y, Fukuzawa K, Komeiji Y, Tanaka S. Interaction analyses of SARS-CoV-2 spike protein based on fragment molecular orbital calculations. RSC Adv 2021; 11:3272-3279. [PMID: 35424290 PMCID: PMC8694004 DOI: 10.1039/d0ra09555a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
At the stage of SARS-CoV-2 infection in human cells, the spike protein consisting of three chains, A, B, and C, with a total of 3300 residues plays a key role, and thus its structural properties and the binding nature of receptor proteins to host human cells or neutralizing antibodies has attracted considerable interest. Here, we report on interaction analyses of the spike protein in both closed (PDB-ID: 6VXX) and open (6VYB) structures, based on large-scale fragment molecular orbital (FMO) calculations at the level of up to the fourth-order Møller–Plesset perturbation with singles, doubles, and quadruples (MP4(SDQ)). Inter-chain interaction energies were evaluated for both structures, and a mutual comparison indicated considerable losses of stabilization energies in the open structure, especially in the receptor binding domain (RBD) of chain-B. The role of charged residues in inter-chain interactions was illuminated as well. By two separate calculations for the RBD complexes with angiotensin-converting enzyme 2 (ACE2) (6M0J) and B38 Fab antibody (7BZ5), it was found that the binding with ACE2 or antibody partially compensated for this stabilization loss of RBD. Visualized IFIE results seen from chain-B of spike protein.![]()
Collapse
Affiliation(s)
- Kazuki Akisawa
- Department of Chemistry and Research Center for Smart Molecules
- Faculty of Science
- Rikkyo University
- Toshima-ku
- Japan
| | - Ryo Hatada
- Department of Chemistry and Research Center for Smart Molecules
- Faculty of Science
- Rikkyo University
- Toshima-ku
- Japan
| | - Koji Okuwaki
- Department of Chemistry and Research Center for Smart Molecules
- Faculty of Science
- Rikkyo University
- Toshima-ku
- Japan
| | - Yuji Mochizuki
- Department of Chemistry and Research Center for Smart Molecules
- Faculty of Science
- Rikkyo University
- Toshima-ku
- Japan
| | - Kaori Fukuzawa
- Institute of Industrial Science
- The University of Tokyo
- Meguro-ku
- Japan
- School of Pharmacy and Pharmaceutical Sciences
| | - Yuto Komeiji
- Health and Medical Research Institute
- AIST
- Tsukuba
- Japan
| | - Shigenori Tanaka
- Graduate School of System Informatics
- Department of Computational Science
- Kobe University
- Kobe 657-8501
- Japan
| |
Collapse
|
12
|
Kato K, Honma T, Fukuzawa K. Intermolecular interaction among Remdesivir, RNA and RNA-dependent RNA polymerase of SARS-CoV-2 analyzed by fragment molecular orbital calculation. J Mol Graph Model 2020; 100:107695. [PMID: 32702590 PMCID: PMC7363421 DOI: 10.1016/j.jmgm.2020.107695] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 01/18/2023]
Abstract
COVID-19, a disease caused by a new strain of coronavirus (SARS-CoV-2) originating from Wuhan, China, has now spread around the world, triggering a global pandemic, leaving the public eagerly awaiting the development of a specific medicine and vaccine. In response, aggressive efforts are underway around the world to overcome COVID-19. In this study, referencing the data published on the Protein Data Bank (PDB ID: 7BV2) on April 22, we conducted a detailed analysis of the interaction between the complex structures of the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 and Remdesivir, an antiviral drug, from the quantum chemical perspective based on the fragment molecular orbital (FMO) method. In addition to the hydrogen bonding and intra-strand stacking between complementary strands as seen in normal base pairs, Remdesivir bound to the terminus of an primer-RNA strand was further stabilized by diagonal π-π stacking with the -1A' base of the complementary strand and an additional hydrogen bond with an intra-strand base, due to the effect of chemically modified functional group. Moreover, stable OH/π interaction is also formed with Thr687 of the RdRp. We quantitatively revealed the exhaustive interaction within the complex among Remdesivir, template-primer-RNA, RdRp and co-factors, and published the results in the FMODB database.
Collapse
Affiliation(s)
- Koichiro Kato
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan; Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Teruki Honma
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| | - Kaori Fukuzawa
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan; Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan.
| |
Collapse
|
13
|
Hatada R, Okuwaki K, Mochizuki Y, Handa Y, Fukuzawa K, Komeiji Y, Okiyama Y, Tanaka S. Fragment Molecular Orbital Based Interaction Analyses on COVID-19 Main Protease - Inhibitor N3 Complex (PDB ID: 6LU7). J Chem Inf Model 2020; 60:3593-3602. [PMID: 32539372 PMCID: PMC7318557 DOI: 10.1021/acs.jcim.0c00283] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Indexed: 01/23/2023]
Abstract
The worldwide spread of COVID-19 (new coronavirus found in 2019) is an emergent issue to be tackled. In fact, a great amount of works in various fields have been made in a rather short period. Here, we report a fragment molecular orbital (FMO) based interaction analysis on a complex between the SARS-CoV-2 main protease (Mpro) and its peptide-like inhibitor N3 (PDB ID: 6LU7). The target inhibitor molecule was segmented into five fragments in order to capture site specific interactions with amino acid residues of the protease. The interaction energies were decomposed into several contributions, and then the characteristics of hydrogen bonding and dispersion stabilization were made clear. Furthermore, the hydration effect was incorporated by the Poisson-Boltzmann (PB) scheme. From the present FMO study, His41, His163, His164, and Glu166 were found to be the most important amino acid residues of Mpro in interacting with the inhibitor, mainly due to hydrogen bonding. A guideline for optimizations of the inhibitor molecule was suggested as well based on the FMO analysis.
Collapse
Affiliation(s)
- Ryo Hatada
- Department of Chemistry and Research
Center for Smart Molecules, Faculty of Science, Rikkyo
University, 3-34-1 Nishi-ikebukuro, Toshima-ku,
Tokyo 171-8501, Japan
| | - Koji Okuwaki
- Department of Chemistry and Research
Center for Smart Molecules, Faculty of Science, Rikkyo
University, 3-34-1 Nishi-ikebukuro, Toshima-ku,
Tokyo 171-8501, Japan
| | - Yuji Mochizuki
- Department of Chemistry and Research
Center for Smart Molecules, Faculty of Science, Rikkyo
University, 3-34-1 Nishi-ikebukuro, Toshima-ku,
Tokyo 171-8501, Japan
- Institute of Industrial Science,
The University of Tokyo, 4-6-1
Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Yuma Handa
- School of Pharmacy and Pharmaceutical
Sciences, Hoshi University, 2-4-41 Ebara,
Shinagawa-Ku, Tokyo 142-8501, Japan
| | - Kaori Fukuzawa
- Institute of Industrial Science,
The University of Tokyo, 4-6-1
Komaba, Meguro-ku, Tokyo 153-8505, Japan
- School of Pharmacy and Pharmaceutical
Sciences, Hoshi University, 2-4-41 Ebara,
Shinagawa-Ku, Tokyo 142-8501, Japan
| | - Yuto Komeiji
- Health and Medical
Research Institute, AIST, Tsukuba Central 6,
Tsukuba, Ibaraki 305-8566, Japan
| | - Yoshio Okiyama
- Division of Medicinal Safety Science,
National Institute of Health
Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki,
Kanagawa 201-9501, Japan
| | - Shigenori Tanaka
- Graduate School of System Informatics,
Department of Computational Science, Kobe
University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501,
Japan
| |
Collapse
|
14
|
Heifetz A, Morao I, Babu MM, James T, Southey MWY, Fedorov DG, Aldeghi M, Bodkin MJ, Townsend-Nicholson A. Characterizing Interhelical Interactions of G-Protein Coupled Receptors with the Fragment Molecular Orbital Method. J Chem Theory Comput 2020; 16:2814-2824. [PMID: 32096994 PMCID: PMC7161079 DOI: 10.1021/acs.jctc.9b01136] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
G-protein coupled receptors (GPCRs) are the largest superfamily of membrane proteins, regulating almost every aspect of cellular activity and serving as key targets for drug discovery. We have identified an accurate and reliable computational method to characterize the strength and chemical nature of the interhelical interactions between the residues of transmembrane (TM) domains during different receptor activation states, something that cannot be characterized solely by visual inspection of structural information. Using the fragment molecular orbital (FMO) quantum mechanics method to analyze 35 crystal structures representing different branches of the class A GPCR family, we have identified 69 topologically equivalent TM residues that form a consensus network of 51 inter-TM interactions, providing novel results that are consistent with and help to rationalize experimental data. This discovery establishes a comprehensive picture of how defined molecular forces govern specific interhelical interactions which, in turn, support the structural stability, ligand binding, and activation of GPCRs.
Collapse
Affiliation(s)
- Alexander Heifetz
- Evotec
(U.K.) Ltd., 114 Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
- Institute
of Structural & Molecular Biology, Research Department of Structural
& Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
- E-mail: (A.H.)
| | - Inaki Morao
- Evotec
(U.K.) Ltd., 114 Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
- E-mail: (I.M.)
| | - M. Madan Babu
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Tim James
- Evotec
(U.K.) Ltd., 114 Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | | | - Dmitri G. Fedorov
- CD-FMat,
National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Matteo Aldeghi
- Department
of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Michael J. Bodkin
- Evotec
(U.K.) Ltd., 114 Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | - Andrea Townsend-Nicholson
- Institute
of Structural & Molecular Biology, Research Department of Structural
& Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
15
|
Abstract
Estimating the range of three-dimensional structures (conformations) that are available to a molecule is a key component of computer-aided drug design. Quantum mechanical simulation offers improved accuracy over forcefield methods, but at a high computational cost. The question is whether this increased cost can be justified in a context in which high-throughput analysis of large numbers of molecules is often key. This chapter discusses the application of quantum mechanics to conformational searching, with a focus on three key challenges: (1) the generation of ensembles that include a good approximation to a molecule's bioactive conformation at as prominent a ranking as possible; (2) rational analysis and modification of a pre-established bioactive conformation in terms of its energetics; and (3) approximation of real solution-phase conformational ensembles in tandem with NMR data. The impact of QM on the high-throughput application (1) is debatable, meaning that for the moment its primary application is still lower-throughput applications such as (2) and (3). The optimal choice of QM method is also discussed. Rigorous benchmarking suggests that DFT methods are only acceptable when used with large basis sets, but a trickle of papers continue to obtain useful results with relatively low-cost methods, leading to a dilemma that the literature has yet to fully resolve.
Collapse
|
16
|
Heifetz A, James T, Southey M, Morao I, Aldeghi M, Sarrat L, Fedorov DG, Bodkin MJ, Townsend-Nicholson A. Characterising GPCR-ligand interactions using a fragment molecular orbital-based approach. Curr Opin Struct Biol 2019; 55:85-92. [PMID: 31022570 DOI: 10.1016/j.sbi.2019.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/19/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
Abstract
There has been fantastic progress in solving GPCR crystal structures. However, the ability of X-ray crystallography to guide the drug discovery process for GPCR targets is limited by the availability of accurate tools to explore receptor-ligand interactions. Visual inspection and molecular mechanics approaches cannot explain the full complexity of molecular interactions. Quantum mechanical approaches (QM) are often too computationally expensive, but the fragment molecular orbital (FMO) method offers an excellent solution that combines accuracy, speed and the ability to reveal key interactions that would otherwise be hard to detect. Integration of GPCR crystallography or homology modelling with FMO reveals atomistic details of the individual contributions of each residue and water molecule towards ligand binding, including an analysis of their chemical nature.
Collapse
Affiliation(s)
- Alexander Heifetz
- Evotec (UK) Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom.
| | - Tim James
- Evotec (UK) Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Michelle Southey
- Evotec (UK) Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Inaki Morao
- Evotec (UK) Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Matteo Aldeghi
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Laurie Sarrat
- Evotec (France) SAS, 195 Route d' Espagne, 31036 Toulouse, France
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Mike J Bodkin
- Evotec (UK) Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Andrea Townsend-Nicholson
- Institute of Structural & Molecular Biology, Research Department of Structural & Molecular Biology, Division of Biosciences, University College London, London,WC1E 6BT, United Kingdom
| |
Collapse
|
17
|
Watanabe C, Watanabe H, Okiyama Y, Takaya D, Fukuzawa K, Tanaka S, Honma T. Development of an automated fragment molecular orbital (FMO) calculation protocol toward construction of quantum mechanical calculation database for large biomolecules . CHEM-BIO INFORMATICS JOURNAL 2019. [DOI: 10.1273/cbij.19.5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Hirofumi Watanabe
- Education Center on Computational Science and Engineering, Kobe University
| | - Yoshio Okiyama
- Center for Biosystems Dynamics Research, RIKEN
- National Institute of Health Sciences
| | | | - Kaori Fukuzawa
- Center for Biosystems Dynamics Research, RIKEN
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University
| | | | | |
Collapse
|