1
|
Apostol AJ, Bragagnolo NJ, Rodriguez CS, Audette GF. Structural insights into the disulfide isomerase and chaperone activity of TrbB of the F plasmid type IV secretion system. Curr Res Struct Biol 2024; 8:100156. [PMID: 39131116 PMCID: PMC11315126 DOI: 10.1016/j.crstbi.2024.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/07/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
Bacteria have evolved elaborate mechanisms to thrive in stressful environments. F-like plasmids in gram-negative bacteria encode for a multi-protein Type IV Secretion System (T4SSF) that is functional for bacterial proliferation and adaptation through the process of conjugation. The periplasmic protein TrbB is believed to have a stabilizing chaperone role in the T4SSF assembly, with TrbB exhibiting disulfide isomerase (DI) activity. In the current report, we demonstrate that the deletion of the disordered N-terminus of TrbBWT, resulting in a truncation construct TrbB37-161, does not affect its catalytic in vitro activity compared to the wild-type protein (p = 0.76). Residues W37-K161, which include the active thioredoxin motif, are sufficient for DI activity. The N-terminus of TrbBWT is disordered as indicated by a structural model of GST-TrbBWT based on ColabFold-AlphaFold2 and Small Angle X-Ray Scattering data and 1H-15N Heteronuclear Single Quantum Correlation (HSQC) spectroscopy of the untagged protein. This disordered region likely contributes to the protein's dynamicity; removal of this region results in a more stable protein based on 1H-15N HSQC and Circular Dichroism Spectroscopies. Lastly, size exclusion chromatography analysis of TrbBWT in the presence of TraW, a T4SSF assembly protein predicted to interact with TrbBWT, does not support the inference of a stable complex forming in vitro. This work advances our understanding of TrbB's structure and function, explores the role of structural disorder in protein dynamics in the context of a T4SSF accessory protein, and highlights the importance of redox-assisted protein folding in the T4SSF.
Collapse
Affiliation(s)
- Arnold J. Apostol
- Department of Chemistry, York University, 4700 Keele St, Toronto, ON, Canada, M3J 1P3
- Centre for Research on Biomolecular Interactions, York University, Canada
| | - Nicholas J. Bragagnolo
- Department of Chemistry, York University, 4700 Keele St, Toronto, ON, Canada, M3J 1P3
- Centre for Research on Biomolecular Interactions, York University, Canada
| | - Christina S. Rodriguez
- Department of Chemistry, York University, 4700 Keele St, Toronto, ON, Canada, M3J 1P3
- Centre for Research on Biomolecular Interactions, York University, Canada
| | - Gerald F. Audette
- Department of Chemistry, York University, 4700 Keele St, Toronto, ON, Canada, M3J 1P3
- Centre for Research on Biomolecular Interactions, York University, Canada
| |
Collapse
|
2
|
Fousek-Schuller VJ, Borgstahl GEO. The Intriguing Mystery of RPA Phosphorylation in DNA Double-Strand Break Repair. Genes (Basel) 2024; 15:167. [PMID: 38397158 PMCID: PMC10888239 DOI: 10.3390/genes15020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Human Replication Protein A (RPA) was historically discovered as one of the six components needed to reconstitute simian virus 40 DNA replication from purified components. RPA is now known to be involved in all DNA metabolism pathways that involve single-stranded DNA (ssDNA). Heterotrimeric RPA comprises several domains connected by flexible linkers and is heavily regulated by post-translational modifications (PTMs). The structure of RPA has been challenging to obtain. Various structural methods have been applied, but a complete understanding of RPA's flexible structure, its function, and how it is regulated by PTMs has yet to be obtained. This review will summarize recent literature concerning how RPA is phosphorylated in the cell cycle, the structural analysis of RPA, DNA and protein interactions involving RPA, and how PTMs regulate RPA activity and complex formation in double-strand break repair. There are many holes in our understanding of this research area. We will conclude with perspectives for future research on how RPA PTMs control double-strand break repair in the cell cycle.
Collapse
Affiliation(s)
| | - Gloria E. O. Borgstahl
- Eppley Institute for Research in Cancer & Allied Diseases, UNMC, Omaha, NE 68198-6805, USA
| |
Collapse
|
3
|
Tworek JW, Elcock AH. Orientationally Averaged Version of the Rotne-Prager-Yamakawa Tensor Provides a Fast but Still Accurate Treatment of Hydrodynamic Interactions in Brownian Dynamics Simulations of Biological Macromolecules. J Chem Theory Comput 2023; 19:5099-5111. [PMID: 37409946 PMCID: PMC10413861 DOI: 10.1021/acs.jctc.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 07/07/2023]
Abstract
The Brownian dynamics (BD) simulation technique is widely used to model the diffusive and conformational dynamics of complex systems comprising biological macromolecules. For the diffusive properties of macromolecules to be described correctly by BD simulations, it is necessary to include hydrodynamic interactions (HIs). When modeled at the Rotne-Prager-Yamakawa (RPY) level of theory, for example, the translational and rotational diffusion coefficients of isolated macromolecules can be accurately reproduced; when HIs are neglected, however, diffusion coefficients can be underestimated by an order of magnitude or more. The principal drawback to the inclusion of HIs in BD simulations is their computational expense, and several previous studies have sought to accelerate their modeling by developing fast approximations for the calculation of the correlated random displacements. Here, we explore the use of an alternative way to accelerate the calculation of HIs, i.e., by replacing the full RPY tensor with an orientationally averaged (OA) version which retains the distance dependence of the HIs but averages out their orientational dependence. We seek here to determine whether such an approximation can be justified in application to the modeling of typical proteins and RNAs. We show that the use of an OA-RPY tensor allows translational diffusion of macromolecules to be modeled with very high accuracy at the cost of rotational diffusion being underestimated by ∼25%. We show that this finding is independent of the type of macromolecule simulated and the level of structural resolution employed in the models. We also show, however, that these results are critically dependent on the inclusion of a non-zero term that describes the divergence of the diffusion tensor: when this term is omitted from simulations that use the OA-RPY model, unfolded macromolecules undergo rapid collapse. Our results indicate that the orientationally averaged RPY tensor is likely to be a useful, fast, approximate way of including HIs in BD simulations of intermediate-scale systems.
Collapse
Affiliation(s)
- John W. Tworek
- Department of Biochemistry
& Molecular Biology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Adrian H. Elcock
- Department of Biochemistry
& Molecular Biology, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
4
|
Tworek JW, Elcock AH. An Orientationally Averaged Version of the Rotne-Prager-Yamakawa Tensor Provides A Fast But Still Accurate Treatment Of Hydrodynamic Interactions In Brownian Dynamics Simulations Of Biological Macromolecules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537865. [PMID: 37162930 PMCID: PMC10168278 DOI: 10.1101/2023.04.21.537865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The Brownian dynamics (BD) simulation technique is widely used to model the diffusive and conformational dynamics of complex systems comprising biological macromolecules. For the diffusive properties of macromolecules to be described correctly by BD simulations, it is necessary to include hydrodynamic interactions (HI). When modeled at the Rotne-Prager-Yamakawa (RPY) level of theory, for example, the translational and rotational diffusion coefficients of isolated macromolecules can be accurately reproduced; when HIs are neglected, however, diffusion coefficients can be underestimated by an order of magnitude or more. The principal drawback to the inclusion of HIs in BD simulations is their computational expense, and several previous studies have sought to accelerate their modeling by developing fast approximations for the calculation of the correlated random displacements. Here we explore the use of an alternative way to accelerate calculation of HIs, i.e., by replacing the full RPY tensor with an orientationally averaged (OA) version which retains the distance dependence of the HIs but averages out their orientational dependence. We seek here to determine whether such an approximation can be justified in application to the modeling of typical proteins and RNAs. We show that the use of an OA RPY tensor allows translational diffusion of macromolecules to be modeled with very high accuracy at the cost of rotational diffusion being underestimated by ∼25%. We show that this finding is independent of the type of macromolecule simulated and the level of structural resolution employed in the models. We also show, however, that these results are critically dependent on the inclusion of a non-zero term that describes the divergence of the diffusion tensor: when this term is omitted from simulations that use the OA RPY model, unfolded macromolecules undergo rapid collapse. Our results indicate that the orientationally averaged RPY tensor is likely to be a useful, fast approximate way of including HIs in BD simulations of intermediate-scale systems.
Collapse
|
5
|
Ling JA, Frevert Z, Washington MT. Recent Advances in Understanding the Structures of Translesion Synthesis DNA Polymerases. Genes (Basel) 2022; 13:genes13050915. [PMID: 35627300 PMCID: PMC9141541 DOI: 10.3390/genes13050915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022] Open
Abstract
DNA damage in the template strand causes replication forks to stall because replicative DNA polymerases are unable to efficiently incorporate nucleotides opposite template DNA lesions. To overcome these replication blocks, cells are equipped with multiple translesion synthesis polymerases that have evolved specifically to incorporate nucleotides opposite DNA lesions. Over the past two decades, X-ray crystallography has provided a wealth of information about the structures and mechanisms of translesion synthesis polymerases. This approach, however, has been limited to ground state structures of these polymerases bound to DNA and nucleotide substrates. Three recent methodological developments have extended our understanding of the structures and mechanisms of these polymerases. These include time-lapse X-ray crystallography, which allows one to identify novel reaction intermediates; full-ensemble hybrid methods, which allow one to examine the conformational flexibility of the intrinsically disordered regions of proteins; and cryo-electron microscopy, which allows one to determine the high-resolution structures of larger protein complexes. In this article, we will discuss how these three methodological developments have added to our understanding of the structures and mechanisms of translesion synthesis polymerases.
Collapse
|
6
|
Peng W, Wang T, Liang XR, Yang YS, Wang QZ, Cheng HF, Peng YK, Ding F. Characterizing the potentially neuronal acetylcholinesterase reactivity toward chiral pyraclofos: Enantioselective insights from spectroscopy, in silico docking, molecular dynamics simulation and per-residue energy decomposition studies. J Mol Graph Model 2021; 110:108069. [PMID: 34773872 DOI: 10.1016/j.jmgm.2021.108069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 10/20/2022]
Abstract
Chiral organophosphorus agents are distributed ubiquitously in the environment, but the neuroactivity of these asymmetric chemicals to humans remains uncertain. This scenario was to explore the stereoselective neurobiological response of human acetylcholinesterase (AChE) to chiral pyraclofos at the enantiomeric scale, and then decipher the microscopic basis of enantioselective neurotoxicity of pyraclofos enantiomers. The results indicated that (R)-/(S)-pyraclofos can form the bioconjugates with AChE with a stoichiometric ratio of 1:1, but the neuronal affinity of (R)-pyraclofos (K = 6.31 × 104 M-1) with AChE was larger than that of (S)-pyraclofos (K = 1.86 × 104 M-1), and significant enantioselectivity was existed in the biochemical reaction. The modes of neurobiological action revealed that pyraclofos enantiomers were situated at the substrate binding domain, and the strength of the overall noncovalent bonds between (S)-pyraclofos and the residues was weaker than that of (R)-pyraclofos, resulting in the high inhibitory effect of (R)-pyraclofos toward the activity of AChE. Dynamic enantioselective biointeractions illustrated that the intervention of inherent conformational flexibility in the AChE-(R)-pyraclofos was greater than that of the AChE-(S)-pyraclofos, which arises from the big spatial displacement and the conformational flip of the binding domain composed of the residues Thr-64~Asn-89, Gly-122~Asp-134, and Thr-436~Tyr-449. Energy decomposition exhibited that the Gibbs free energies of the AChE-(R)-/(S)-pyraclofos were ΔG° = -37.4/-30.2 kJ mol-1, respectively, and the disparity comes from the electrostatic energy during the stereoselective neurochemical reactions. Quantitative conformational analysis further confirmed the atomic-scale computational chemistry conclusions, and the perturbation of (S)-pyraclofos on the AChE's ordered conformation was lower than that of (R)-pyraclofos, which is germane to the interaction energies of the crucial residues, e.g. Tyr-124, Tyr-337, Asp-74, Trp-86, and Tyr-119. Evidently, this attempt will contribute mechanistic information to uncovering the neurobiological effects of chiral organophosphates on the body.
Collapse
Affiliation(s)
- Wei Peng
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China; State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tao Wang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Xiang-Rong Liang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Yu-Sen Yang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Qi-Zhao Wang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Hong-Fei Cheng
- School of Earth Science and Resources, Chang'an University, Xi'an, 710054, China
| | - Yu-Kui Peng
- Xining Center for Agricultural Product Quality and Safety Testing, Xining, 810016, China
| | - Fei Ding
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710054, China; Department of Agricultural Chemistry, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
7
|
Morgunov AS, Saar KL, Vendruscolo M, Knowles TPJ. New Frontiers for Machine Learning in Protein Science. J Mol Biol 2021; 433:167232. [PMID: 34499920 DOI: 10.1016/j.jmb.2021.167232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
Protein function is fundamentally reliant on inter-molecular interactions that underpin the ability of proteins to form complexes driving biological processes in living cells. Increasingly, such interactions are recognised as being formed between proteins that exist on a broad spectrum of dynamic conformational states and levels of intrinsic disorder. Additionally, the sizes of the structures formed can range from simple binary complexes to large dynamic biomolecular condensates measuring 100 nm or more. Understanding the parameters that govern such interactions, how they form, how they lead to function and what happens when they take place in unintended manners and lead to disease, represent some of the core questions for molecular biosciences. In light of recent advances made in solving the protein folding problem by machine learning methods, we discuss here the challenges and opportunities brought by these new data-driven approaches for the next frontiers of biomolecular science.
Collapse
Affiliation(s)
- Alexey S Morgunov
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, United Kingdom; Fluidic Analytics Ltd, Cambridge, United Kingdom. https://twitter.com/AlexeyMorgunov
| | - Kadi L Saar
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, United Kingdom. https://twitter.com/KadiLiisSaar
| | - Michele Vendruscolo
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, United Kingdom.
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, United Kingdom; Cavendish Laboratory, University of Cambridge, CB3 0HE, United Kingdom.
| |
Collapse
|
8
|
Control of DNA Damage Bypass by Ubiquitylation of PCNA. Genes (Basel) 2020; 11:genes11020138. [PMID: 32013080 PMCID: PMC7074500 DOI: 10.3390/genes11020138] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/01/2023] Open
Abstract
DNA damage leads to genome instability by interfering with DNA replication. Cells possess several damage bypass pathways that mitigate the effects of DNA damage during replication. These pathways include translesion synthesis and template switching. These pathways are regulated largely through post-translational modifications of proliferating cell nuclear antigen (PCNA), an essential replication accessory factor. Mono-ubiquitylation of PCNA promotes translesion synthesis, and K63-linked poly-ubiquitylation promotes template switching. This article will discuss the mechanisms of how these post-translational modifications of PCNA control these bypass pathways from a structural and biochemical perspective. We will focus on the structure and function of the E3 ubiquitin ligases Rad18 and Rad5 that facilitate the mono-ubiquitylation and poly-ubiquitylation of PCNA, respectively. We conclude by reviewing alternative ideas about how these post-translational modifications of PCNA regulate the assembly of the multi-protein complexes that promote damage bypass pathways.
Collapse
|
9
|
Gildenberg MS, Washington MT. Conformational flexibility of fork-remodeling helicase Rad5 shown by full-ensemble hybrid methods. PLoS One 2019; 14:e0223875. [PMID: 31626633 PMCID: PMC6799953 DOI: 10.1371/journal.pone.0223875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
Several pathways exist to bypass DNA damage during replication. One such pathway is template switching. The Rad5 protein plays two important roles in template switching: it is an E3 ubiquitin ligase that catalyzes PCNA poly-ubiquitylation and it is a helicase that converts replication forks to chicken foot structures. To understand the structure, conformational flexibility, and mechanism of Rad5, we used a full-ensemble hybrid method combining Langevin dynamics simulations and small-angle X-ray scattering. From these studies, we generated the first experimentally validated, high-resolution structural model of Rad5. We found that Rad5 is more compact and less extended than is suggested by its large amount of predicted intrinsic disorder. Thus, Rad5 likely has a novel intra-molecular interaction that limits the range of conformational space it can sample. We provide evidence for a novel interaction between the HIRAN and the helicase domains of Rad5, and we discuss the biological and mechanistic implications of this.
Collapse
Affiliation(s)
- Melissa S. Gildenberg
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, Iowa, United States of America
| | - M. Todd Washington
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|