1
|
Bhowmik R, Roy M. Recent advances on the development of NO-releasing molecules (NORMs) for biomedical applications. Eur J Med Chem 2024; 268:116217. [PMID: 38367491 DOI: 10.1016/j.ejmech.2024.116217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
Nitric oxide (NO) is an important biological messenger as well as a signaling molecule that participates in a broad range of physiological events and therapeutic applications in biological systems. However, due to its very short half-life in physiological conditions, its therapeutic applications are restricted. Efforts have been made to develop an enormous number of NO-releasing molecules (NORMs) and motifs for NO delivery to the target tissues. These NORMs involve organic nitrate, nitrite, nitro compounds, transition metal nitrosyls, and several nanomaterials. The controlled release of NO from these NORMs to the specific site requires several external stimuli like light, sound, pH, heat, enzyme, etc. Herein, we have provided a comprehensive review of the biochemistry of nitric oxide, recent advancements in NO-releasing materials with the appropriate stimuli of NO release, and their biomedical applications in cancer and other disease control.
Collapse
Affiliation(s)
- Rintu Bhowmik
- Department of Chemistry, National Institute of Technology Manipur, Langol, 795004, Imphal West, Manipur, India
| | - Mithun Roy
- Department of Chemistry, National Institute of Technology Manipur, Langol, 795004, Imphal West, Manipur, India.
| |
Collapse
|
2
|
Ogawara K, Inanami O, Takakura H, Saita K, Nakajima K, Kumar S, Ieda N, Kobayashi M, Taketsugu T, Ogawa M. Theoretical Design and Synthesis of Caged Compounds Using X-Ray-Triggered Azo Bond Cleavage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306586. [PMID: 38225711 DOI: 10.1002/advs.202306586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/07/2023] [Indexed: 01/17/2024]
Abstract
Caged compounds are frequently used in life science research. However, the light used to activate them is commonly absorbed and scattered by biological materials, limiting their use to basic research in cells or small animals. In contrast, hard X-rays exhibit high bio-permeability due to the difficulty of interacting with biological molecules. With the main goal of developing X-ray activatable caged compounds, azo compounds are designed and synthesized with a positive charge and long π-conjugated system to increase the reaction efficiency with hydrated electrons. The azo bonds in the designed compounds are selectively cleaved by X-ray, and the fluorescent substance Diethyl Rhodamine is released. Based on the results of experiments and quantum chemical calculations, azo bond cleavage is assumed to occur via a two-step process: a two-electron reduction of the azo bond followed by N─N bond cleavage. Cellular experiments also demonstrate that the azo bonds can be cleaved intracellularly. Thus, caged compounds that can be activated by an azo bond cleavage reaction promoted by X-ray are successfully generated.
Collapse
Affiliation(s)
- Koki Ogawara
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Osamu Inanami
- Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Hideo Takakura
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Kenichiro Saita
- Quantum Chemistry Lab, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Kohei Nakajima
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Sonu Kumar
- Quantum Chemistry Lab, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Naoya Ieda
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Masato Kobayashi
- Quantum Chemistry Lab, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Tetsuya Taketsugu
- Quantum Chemistry Lab, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Mikako Ogawa
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| |
Collapse
|
3
|
Bargstedt J, Reinschmidt M, Tydecks L, Kolmar T, Hendrich CM, Jäschke A. Photochromic Nucleosides and Oligonucleotides. Angew Chem Int Ed Engl 2024; 63:e202310797. [PMID: 37966433 DOI: 10.1002/anie.202310797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
Photochromism is a reversible phenomenon wherein a material undergoes a change in color upon exposure to light. In organic photochromes, this effect often results from light-induced isomerization reactions, leading to alterations in either the spatial orientation or electronic properties of the photochrome. The incorporation of photochromic moieties into biomolecules, such as proteins or nucleic acids, has become a prevalent approach to render these biomolecules responsive to light stimuli. Utilizing light as a trigger for the manipulation of biomolecular structure and function offers numerous advantages compared to other stimuli, such as chemical or electrical treatments, due to its non-invasive nature. Consequently, light proves particularly advantageous in cellular and tissue applications. In this review, we emphasize recent advancements in the field of photochromic nucleosides and oligonucleotides. We provide an overview of the design principles of different classes of photochromes, synthetic strategies, critical analytical challenges, as well as structure-property relationships. The applications of photochromic nucleic acid derivatives encompass diverse domains, ranging from the precise photoregulation of gene expression to the controlled modulation of the three-dimensional structures of oligonucleotides and the development of DNA-based fluorescence modulators. Moreover, we present a future perspective on potential modifications and applications.
Collapse
Affiliation(s)
- Jörn Bargstedt
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Martin Reinschmidt
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Leon Tydecks
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Theresa Kolmar
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Christoph M Hendrich
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
4
|
Schulte AM, Alachouzos G, Szymanski W, Feringa BL. The fate of the contact ion pair determines the photochemistry of coumarin-based photocleavable protecting groups. Chem Sci 2024; 15:2062-2073. [PMID: 38332822 PMCID: PMC10848663 DOI: 10.1039/d3sc05725a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024] Open
Abstract
Photocleavable protecting groups (PPGs) enable the precise spatiotemporal control over the release of a payload of interest, in particular a bioactive substance, through light irradiation. A crucial parameter that determines the practical applicability of PPGs is the efficiency of payload release, largely governed by the quantum yield of photolysis (QY). Understanding which parameters determine the QY will prove crucial for engineering improved PPGs and their effective future applications, especially in the emerging field of photopharmacology. The Contact Ion Pair (CIP) has been recognized as an important intermediate in the uncaging process, but the key influence of its fate on the quantum yield has not been explored yet, limiting our ability to design improved PPGs. Here, we demonstrate that the CIP escape mechanism of PPGs is crucial for determining their payload- and solvent-dependent photolysis QY, and illustrate that an intramolecular type of CIP escape is superior over diffusion-dependent CIP escape. Furthermore, we report a strong correlation of the photolysis QY of a range of coumarin PPGs with the DFT-calculated height of all three energy barriers involved in the photolysis reaction, despite the vastly different mechanisms of CIP escape that these PPGs exhibit. Using the insights obtained through our analysis, we were able to predict the photolysis QY of a newly designed PPG with particularly high accuracy. The level of understanding of the factors determining the QY of PPGs presented here will move the ever-expanding field of PPG applications forward and provides a blueprint for the development of PPGs with QYs that are independent of payload-topology and solvent polarity.
Collapse
Affiliation(s)
- Albert Marten Schulte
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Georgios Alachouzos
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
5
|
Zhu Y, Yan X, Shi Y, Liu B, Huang W, Chu L. Near-infrared light controlled protein degradation by photo-caged lenalidomide and pomalidomide. Bioorg Chem 2024; 143:107050. [PMID: 38163423 DOI: 10.1016/j.bioorg.2023.107050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Immunomodulatory drugs (e.g. thalidomide, lenalidomide and pomalidomide) have been proven highly successful in clinical treatment of multiple myeloma. However, systematic degradation of zinc finger transcriptional factors induced by these drugs could lead to severe systematic toxicity in patients. Previous reports of NVOC caged pomalidomide attempted to regulate its activity using UVA irradiation, but their application was limited by high cytotoxicity and low tissue penetration. Here, we reported red-shifted BODIPY caged lenalidomide and pomalidomide that enabled red-light controlled protein degradation with spatiotemporal precision.
Collapse
Affiliation(s)
- Yaoji Zhu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaosa Yan
- Department of Critical Care Medicine, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yinan Shi
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Baohua Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Weiren Huang
- State Engineering Laboratory of Medical Key Technologies Application of Synthetic Biology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Ling Chu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Wei H, Xie M, Chen M, Jiang Q, Wang T, Xing P. Shedding light on cellular dynamics: the progress in developing photoactivated fluorophores. Analyst 2024; 149:689-699. [PMID: 38180167 DOI: 10.1039/d3an01994b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Photoactivated fluorophores (PAFs) are highly effective imaging tools that exhibit a removal of caging groups upon light excitation, resulting in the restoration of their bright fluorescence. This unique property allows for precise control over the spatiotemporal aspects of small molecule substances, making them indispensable for studying protein labeling and small molecule signaling within live cells. In this comprehensive review, we explore the historical background of this field and emphasize recent advancements based on various reaction mechanisms. Additionally, we discuss the structures and applications of the PAFs. We firmly believe that the development of more novel PAFs will provide powerful tools to dynamically investigate cells and expand the applications of these techniques into new domains.
Collapse
Affiliation(s)
- Huihui Wei
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Mingli Xie
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Min Chen
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Qinhong Jiang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Tenghui Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Panfei Xing
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
7
|
Schulte AM, Smid LM, Alachouzos G, Szymanski W, Feringa BL. Cation delocalization and photo-isomerization enhance the uncaging quantum yield of a photocleavable protecting group. Chem Commun (Camb) 2024; 60:578-581. [PMID: 38095129 PMCID: PMC10783650 DOI: 10.1039/d3cc05055f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
Photocleavable protecting groups (PPGs) enable the light-induced, spatiotemporal control over the release of a payload of interest. Two fundamental challenges in the design of new, effective PPGs are increasing the quantum yield (QY) of photolysis and red-shifting the absorption spectrum. Here we describe the combination of two photochemical strategies for PPG optimization in one molecule, resulting in significant improvements in both these crucial parameters. Furthermore, we for the first time identify the process of photo-isomerization to strongly influence the QY of photolysis of a PPG and identify the cis-isomer as the superior PPG.
Collapse
Affiliation(s)
- Albert Marten Schulte
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands.
| | - Lianne M Smid
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands.
| | - Georgios Alachouzos
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands.
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands.
| |
Collapse
|
8
|
Wan Z, Yu S, Wang Q, Sambath K, Harty R, Liu X, Chen H, Wang C, Liu X, Zhang Y. Far-red BODIPY-based oxime esters: photo-uncaging and drug delivery. J Mater Chem B 2023; 11:9889-9893. [PMID: 37850246 PMCID: PMC10750304 DOI: 10.1039/d3tb01867a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Far-red BODIPY-based oxime esters for photo-uncaging were designed to release molecules of interest with carboxylic acids. The low power red LED light breaks the N-O oxime ester bond and frees the caged molecules. We studied the mechanism and kinetics of the uncaging procedure using a 1H NMR spectrometer. Moreover, the drug delivery strategy to release valproic acid (VPA) on demand was tested in vitro using this far-red BODIPY photo-uncaging strategy to induce apoptosis in tumor cells.
Collapse
Affiliation(s)
- Zhaoxiong Wan
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, USA.
| | - Shupei Yu
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, USA.
| | - Qi Wang
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, USA.
| | - Karthik Sambath
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, USA.
| | - Roshena Harty
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, USA.
| | - Xiangshan Liu
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, USA.
| | - Hao Chen
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, USA.
| | - Chen Wang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Blvd., New York 11432, USA
| | - Xuan Liu
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, USA
| | - Yuanwei Zhang
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey 07102, USA.
| |
Collapse
|
9
|
Shrestha P, Kand D, Weinstain R, Winter AH. meso-Methyl BODIPY Photocages: Mechanisms, Photochemical Properties, and Applications. J Am Chem Soc 2023; 145:17497-17514. [PMID: 37535757 DOI: 10.1021/jacs.3c01682] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
meso-methyl BODIPY photocages have recently emerged as an exciting new class of photoremovable protecting groups (PPGs) that release leaving groups upon absorption of visible to near-infrared light. In this Perspective, we summarize the development of these PPGs and highlight their critical photochemical properties and applications. We discuss the absorption properties of the BODIPY PPGs, structure-photoreactivity studies, insights into the photoreaction mechanism, the scope of functional groups that can be caged, the chemical synthesis of these structures, and how substituents can alter the water solubility of the PPG and direct the PPG into specific subcellular compartments. Applications that exploit the unique optical and photochemical properties of BODIPY PPGs are also discussed, from wavelength-selective photoactivation to biological studies to photoresponsive organic materials and photomedicine.
Collapse
Affiliation(s)
- Pradeep Shrestha
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| | - Dnyaneshwar Kand
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Roy Weinstain
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Arthur H Winter
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| |
Collapse
|
10
|
López-Corrales M, Rovira A, Gandioso A, Nonell S, Bosch M, Marchán V. Mitochondria-Targeted COUPY Photocages: Synthesis and Visible-Light Photoactivation in Living Cells. J Org Chem 2023. [PMID: 37209100 DOI: 10.1021/acs.joc.3c00387] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Releasing bioactive molecules in specific subcellular locations from the corresponding caged precursors offers great potential in photopharmacology, especially when using biologically compatible visible light. By taking advantage of the intrinsic preference of COUPY coumarins for mitochondria and their long wavelength absorption in the visible region, we have synthesized and fully characterized a series of COUPY-caged model compounds to investigate how the structure of the coumarin caging group affects the rate and efficiency of the photolysis process. Uncaging studies using yellow (560 nm) and red light (620 nm) in phosphate-buffered saline medium have demonstrated that the incorporation of a methyl group in a position adjacent to the photocleavable bond is particularly important to fine-tune the photochemical properties of the caging group. Additionally, the use of a COUPY-caged version of the protonophore 2,4-dinitrophenol allowed us to confirm by confocal microscopy that photoactivation can occur within mitochondria of living HeLa cells upon irradiation with low doses of yellow light. The new photolabile protecting groups presented here complement the photochemical toolbox in therapeutic applications since they will facilitate the delivery of photocages of biologically active compounds into mitochondria.
Collapse
Affiliation(s)
- Marta López-Corrales
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Martí i Franqués 1-11, E-08028 Barcelona, Spain
| | - Anna Rovira
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Martí i Franqués 1-11, E-08028 Barcelona, Spain
| | - Albert Gandioso
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Martí i Franqués 1-11, E-08028 Barcelona, Spain
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Vía Augusta 390, E-08017 Barcelona, Spain
| | - Manel Bosch
- Unitat de Microscòpia Òptica Avançada, Centres Científics i Tecnològics (CCiTUB), Universitat de Barcelona (UB), Av. Diagonal 643, E-08028 Barcelona, Spain
| | - Vicente Marchán
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Martí i Franqués 1-11, E-08028 Barcelona, Spain
| |
Collapse
|
11
|
Brion A, Chaud J, Léonard J, Bolze F, Chassaing S, Frisch B, Heurtault B, Kichler A, Specht A. Red Light-Responsive Upconverting Nanoparticles for Quantitative and Controlled Release of a Coumarin-Based Prodrug. Adv Healthc Mater 2023; 12:e2201474. [PMID: 36222265 PMCID: PMC11469215 DOI: 10.1002/adhm.202201474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/22/2022] [Indexed: 01/18/2023]
Abstract
Photolytic reactions allow the optical control of the liberation of biological effectors by photolabile protecting groups. The development of versatile technologies enabling the use of deep-red or NIR light excitation still represents a challenging issue, in particular for light-induced drug release (e.g., light-induced prodrug activation). Here, light-sensitive biocompatible lipid nanocapsules able to liberate an antitumoral drug through photolysis are presented. It is demonstrated that original photon upconverting nanoparticles (LNC-UCs) chemically conjugated to a coumarin-based photocleavable linker can quantitatively and efficiently release a drug by upconversion luminescence-assisted photolysis using a deep-red excitation wavelength. In addition, it is also able to demonstrate that such nanoparticles are stable in the dark, without any drug leakage in the absence of light. These findings open new avenues to specifically liberate diverse drugs using deep-red or NIR excitations for future therapeutic applications in nanomedicine.
Collapse
Affiliation(s)
- Anaïs Brion
- 3Bio TeamLaboratoire de Conception et Application de Molécules BioactivesUMR 7199 Université de Strasbourg/CNRSFaculté de PharmacieIllkirchF‐67401 CedexFrance
| | - Juliane Chaud
- 3Bio TeamLaboratoire de Conception et Application de Molécules BioactivesUMR 7199 Université de Strasbourg/CNRSFaculté de PharmacieIllkirchF‐67401 CedexFrance
- Équipe de chimie et neurobiologie moléculaireLaboratoire de Conception et Application de Molécules BioactivesUMR 7199 Université de Strasbourg/CNRSFaculté de PharmacieIllkirchF‐67401 CedexFrance
| | - Jérémie Léonard
- Institut de Physique et Chimie des Matériaux de StrasbourgUniversité de Strasbourg/CNRSUMR 7504StrasbourgF‐67034France
| | - Frédéric Bolze
- Équipe de chimie et neurobiologie moléculaireLaboratoire de Conception et Application de Molécules BioactivesUMR 7199 Université de Strasbourg/CNRSFaculté de PharmacieIllkirchF‐67401 CedexFrance
| | - Stefan Chassaing
- Institut de ChimieLaboratoire de SynthèseRéactivité Organiques & Catalyse(LASYROC)Institut de ChimieUMR 7177 Université de Strasbourg/CNRSStrasbourgF‐67000France
| | - Benoît Frisch
- 3Bio TeamLaboratoire de Conception et Application de Molécules BioactivesUMR 7199 Université de Strasbourg/CNRSFaculté de PharmacieIllkirchF‐67401 CedexFrance
| | - Béatrice Heurtault
- 3Bio TeamLaboratoire de Conception et Application de Molécules BioactivesUMR 7199 Université de Strasbourg/CNRSFaculté de PharmacieIllkirchF‐67401 CedexFrance
| | - Antoine Kichler
- 3Bio TeamLaboratoire de Conception et Application de Molécules BioactivesUMR 7199 Université de Strasbourg/CNRSFaculté de PharmacieIllkirchF‐67401 CedexFrance
| | - Alexandre Specht
- Équipe de chimie et neurobiologie moléculaireLaboratoire de Conception et Application de Molécules BioactivesUMR 7199 Université de Strasbourg/CNRSFaculté de PharmacieIllkirchF‐67401 CedexFrance
| |
Collapse
|
12
|
Chung KY, Halwachs KN, Lu P, Sun K, Silva HA, Rosales AM, Page ZA. Rapid hydrogel formation via tandem visible light photouncaging and bioorthogonal ligation. CELL REPORTS. PHYSICAL SCIENCE 2022; 3:101185. [PMID: 37496708 PMCID: PMC10370463 DOI: 10.1016/j.xcrp.2022.101185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The formation of benign polymer scaffolds in water using green-light-reactive photocages is described. These efforts pave an avenue toward the fabrication of synthetic scaffolds that can facilitate the study of cellular events for disease diagnosis and treatment. First, a series of boron dipyrromethene (BODIPY) photocages with nitrogen-containing nucleophiles were examined to determine structure-reactivity relationships, which resulted in a >1,000× increase in uncaging yield. Subsequently, photoinduced hydrogel formation in 90 wt % water was accomplished via biorthogonal carbonyl condensation using hydrophilic polymer scaffolds separately containing BODIPY photocages and ortho-phthalaldehyde (OPA) moieties. Spatiotemporal control is demonstrated with light on/off experiments to modulate gel stiffness and masking to provide <100 μm features. Biocompatability of the method was shown through pre-/post-crosslinking cell viability studies. Short term, these studies are anticipated to guide translation to emergent additive manufacturing technology, which, longer term, will enable the development of 3D cell cultures for tissue engineering applications.
Collapse
Affiliation(s)
- Kun-You Chung
- Department of Chemistry, The University of Texas at Austin; Austin, TX 78712, USA
| | - Kathleen N. Halwachs
- McKetta Department of Chemical Engineering, The University of Texas at Austin; Austin, TX 78712, USA
| | - Pengtao Lu
- Department of Chemistry, The University of Texas at Austin; Austin, TX 78712, USA
| | - Kaihong Sun
- Department of Chemistry, The University of Texas at Austin; Austin, TX 78712, USA
| | - Hope A. Silva
- Department of Chemistry, The University of Texas at Austin; Austin, TX 78712, USA
| | - Adrianne M. Rosales
- McKetta Department of Chemical Engineering, The University of Texas at Austin; Austin, TX 78712, USA
| | - Zachariah A. Page
- Department of Chemistry, The University of Texas at Austin; Austin, TX 78712, USA
- Lead contact
| |
Collapse
|
13
|
Gueta O, Amiram M. Expanding the chemical repertoire of protein-based polymers for drug-delivery applications. Adv Drug Deliv Rev 2022; 190:114460. [PMID: 36030987 DOI: 10.1016/j.addr.2022.114460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/12/2022] [Indexed: 01/24/2023]
Abstract
Expanding the chemical repertoire of natural and artificial protein-based polymers (PBPs) can enable the production of sequence-defined, yet chemically diverse, biopolymers with customized or new properties that cannot be accessed in PBPs composed of only natural amino acids. Various approaches can enable the expansion of the chemical repertoire of PBPs, including chemical and enzymatic treatments or the incorporation of unnatural amino acids. These techniques are employed to install a wide variety of chemical groups-such as bio-orthogonally reactive, cross-linkable, post-translation modifications, and environmentally responsive groups-which, in turn, can facilitate the design of customized PBP-based drug-delivery systems with modified, fine-tuned, or entirely new properties and functions. Here, we detail the existing and emerging technologies for expanding the chemical repertoire of PBPs and review several chemical groups that either demonstrate or are anticipated to show potential in the design of PBP-based drug delivery systems. Finally, we provide our perspective on the remaining challenges and future directions in this field.
Collapse
Affiliation(s)
- Osher Gueta
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| | - Miriam Amiram
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel.
| |
Collapse
|
14
|
Feng Z, Ducos B, Scerbo P, Aujard I, Jullien L, Bensimon D. The Development and Application of Opto-Chemical Tools in the Zebrafish. Molecules 2022; 27:6231. [PMID: 36234767 PMCID: PMC9572478 DOI: 10.3390/molecules27196231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
The zebrafish is one of the most widely adopted animal models in both basic and translational research. This popularity of the zebrafish results from several advantages such as a high degree of similarity to the human genome, the ease of genetic and chemical perturbations, external fertilization with high fecundity, transparent and fast-developing embryos, and relatively low cost-effective maintenance. In particular, body translucency is a unique feature of zebrafish that is not adequately obtained with other vertebrate organisms. The animal's distinctive optical clarity and small size therefore make it a successful model for optical modulation and observation. Furthermore, the convenience of microinjection and high embryonic permeability readily allow for efficient delivery of large and small molecules into live animals. Finally, the numerous number of siblings obtained from a single pair of animals offers large replicates and improved statistical analysis of the results. In this review, we describe the development of opto-chemical tools based on various strategies that control biological activities with unprecedented spatiotemporal resolution. We also discuss the reported applications of these tools in zebrafish and highlight the current challenges and future possibilities of opto-chemical approaches, particularly at the single cell level.
Collapse
Affiliation(s)
- Zhiping Feng
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Bertrand Ducos
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- High Throughput qPCR Core Facility, Ecole Normale Supérieure, Paris Sciences Letters University, 46 Rue d’Ulm, 75005 Paris, France
| | - Pierluigi Scerbo
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- Inovarion, 75005 Paris, France
| | - Isabelle Aujard
- Laboratoire PASTEUR, Département de Chimie, Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
| | - Ludovic Jullien
- Laboratoire PASTEUR, Département de Chimie, Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
| | - David Bensimon
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Takakura H, Matsuhiro S, Inanami O, Kobayashi M, Saita K, Yamashita M, Nakajima K, Suzuki M, Miyamoto N, Taketsugu T, Ogawa M. Ligand release from silicon phthalocyanine dyes triggered by X-ray irradiation. Org Biomol Chem 2022; 20:7270-7277. [PMID: 35972402 DOI: 10.1039/d2ob00957a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ligand release from silicon phthalocyanine (SiPc) dyes triggered by near-infrared (NIR) light is a key photochemical reaction involving caged compounds based on SiPc. Although NIR light is relatively permeable compared with visible light, this light can be attenuated by tissue absorption and scattering; therefore, using light to induce photochemical reactions deep inside the body is difficult. Herein, because X-rays are highly permeable and can produce radicals through the radiolysis of water, we investigated whether the axial ligands of SiPcs can be cleaved using X-ray irradiation. SiPcs with different axial ligands (alkoxy, siloxy, oxycarbonyl, and phenoxy groups) were irradiated with X-rays under hypoxic conditions. We found that the axial ligands were cleaved via reactions with hydrated electrons (e-aq), not OH radicals, generated from water in response to X-ray irradiation, and SiPc with alkoxy groups exhibited the highest cleavage efficiency. A quantitative investigation revealed that X-ray-induced axial ligand cleavage proceeds via a radical chain reaction. The reaction is expected to be applicable to the molecular design of X-ray-activatable functional molecules in the future.
Collapse
Affiliation(s)
- Hideo Takakura
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan.
| | - Shino Matsuhiro
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan.
| | - Osamu Inanami
- Graduate School of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo 060-0818, Japan
| | - Masato Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan.,WPI-ICReDD, Hokkaido University, Kita-ku, Sapporo 001-0021, Japan
| | - Kenichiro Saita
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
| | - Masaki Yamashita
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan.
| | - Kohei Nakajima
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan.
| | - Motofumi Suzuki
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan.
| | - Naoki Miyamoto
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Kita-ku, Sapporo 060-8628, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan.,WPI-ICReDD, Hokkaido University, Kita-ku, Sapporo 001-0021, Japan
| | - Mikako Ogawa
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
16
|
Schulte AM, Alachouzos G, Szymański W, Feringa BL. Strategy for Engineering High Photolysis Efficiency of Photocleavable Protecting Groups through Cation Stabilization. J Am Chem Soc 2022; 144:12421-12430. [PMID: 35775744 PMCID: PMC9284546 DOI: 10.1021/jacs.2c04262] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Photolabile protecting
groups (PPGs) enable the precise activation
of molecular function with light in many research areas, such as photopharmacology,
where remote spatiotemporal control over the release of a molecule
is needed. The design and application of PPGs in recent years have
particularly focused on the development of molecules with high molar
absorptivity at long irradiation wavelengths. However, a crucial parameter,
which is pivotal to the efficiency of uncaging and which has until
now proven highly challenging to improve, is the photolysis quantum
yield (QY). Here, we describe a novel and general approach to greatly
increase the photolysis QY of heterolytic PPGs through stabilization
of an intermediate chromophore cation. When applied to coumarin PPGs,
our strategy resulted in systems possessing an up to a 35-fold increase
in QY and a convenient fluorescent readout during their uncaging,
all while requiring the same number of synthetic steps for their preparation
as the usual coumarin systems. We demonstrate that the same QY engineering
strategy applies to different photolysis payloads and even different
classes of PPGs. Furthermore, analysis of the DFT-calculated energy
barriers in the first singlet excited state reveals valuable insights
into the important factors that determine photolysis efficiency. The
strategy reported herein will enable the development of efficient
PPGs tailored for many applications.
Collapse
Affiliation(s)
- Albert M Schulte
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Georgios Alachouzos
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Wiktor Szymański
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
17
|
Johan AN, Li Y. Development of Photoremovable Linkers as a Novel Strategy to Improve the Pharmacokinetics of Drug Conjugates and Their Potential Application in Antibody-Drug Conjugates for Cancer Therapy. Pharmaceuticals (Basel) 2022; 15:655. [PMID: 35745573 PMCID: PMC9230074 DOI: 10.3390/ph15060655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 02/04/2023] Open
Abstract
Although there have been extensive research and progress on the discovery of anticancer drug over the years, the application of these drugs as stand-alone therapy has been limited by their off-target toxicities, poor pharmacokinetic properties, and low therapeutic index. Targeted drug delivery, especially drug conjugate, has been recognized as a technology that can bring forth a new generation of therapeutics with improved efficacy and reduced side effects for cancer treatment. The linker in a drug conjugate is of essential importance because it impacts the circulation time of the conjugate and the release of the drug for full activity at the target site. Recently, the light-triggered linker has attracted a lot of attention due to its spatiotemporal controllability and attractive prospects of improving the overall pharmacokinetics of the conjugate. In this paper, the latest developments of UV- and IR-triggered linkers and their application and potential in drug conjugate development are reviewed. Some of the most-well-researched photoresponsive structural moieties, such as UV-triggered coumarin, ortho-nitrobenzyl group (ONB), thioacetal ortho-nitrobenzaldehyde (TNB), photocaged C40-oxidized abasic site (PC4AP), and IR-triggered cyanine and BODIPY, are included for discussion. These photoremovable linkers show better physical and chemical stabilities and can undergo rapid cleavage upon irradiation. Very importantly, the drug conjugates containing these linkers exhibit reduced off-target toxicity and overall better pharmacokinetic properties. The progress on photoactive antibody-drug conjugates, such as antibody-drug conjugates (ADC) and antibody-photoabsorber conjugate (APC), as precision medicine in clinical cancer treatment is highlighted.
Collapse
Affiliation(s)
| | - Yi Li
- Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| |
Collapse
|
18
|
Contreras-García E, Lozano C, García-Iriepa C, Marazzi M, Winter AH, Torres C, Sampedro D. Controlling Antimicrobial Activity of Quinolones Using Visible/NIR Light-Activated BODIPY Photocages. Pharmaceutics 2022; 14:pharmaceutics14051070. [PMID: 35631655 PMCID: PMC9144359 DOI: 10.3390/pharmaceutics14051070] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/03/2022] [Accepted: 05/13/2022] [Indexed: 11/26/2022] Open
Abstract
Controlling the activity of a pharmaceutical agent using light offers improved selectivity, reduction of adverse effects, and decreased environmental build-up. These benefits are especially attractive for antibiotics. Herein, we report a series of photoreleasable quinolones, which can be activated using visible/NIR light (520–800 nm). We have used BODIPY photocages with strong absorption in the visible to protect two different quinolone-based compounds and deactivate their antimicrobial properties. This activity could be recovered upon green or red light irradiation. A comprehensive computational study provides new insight into the reaction mechanism, revealing the relevance of considering explicit solvent molecules. The triplet excited state is populated and the photodissociation is assisted by the solvent. The light-controlled activity of these compounds has been assessed on a quinolone-susceptible E. coli strain. Up to a 32-fold change in the antimicrobial activity was measured.
Collapse
Affiliation(s)
- Elena Contreras-García
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain;
| | - Carmen Lozano
- Área Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain; (C.L.); (C.T.)
| | - Cristina García-Iriepa
- Departamento de Química Analítica, Química Física e Ingeniería Química, Grupo de Reactividad y Estructura Molecular (RESMOL), Universidad de Alcalá, 28805 Alcalá de Henares, Spain; (C.G.-I.); (M.M.)
- Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Marco Marazzi
- Departamento de Química Analítica, Química Física e Ingeniería Química, Grupo de Reactividad y Estructura Molecular (RESMOL), Universidad de Alcalá, 28805 Alcalá de Henares, Spain; (C.G.-I.); (M.M.)
- Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Arthur H. Winter
- Department of Chemistry, Iowa State University, Ames, IA 50014, USA;
| | - Carmen Torres
- Área Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain; (C.L.); (C.T.)
| | - Diego Sampedro
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain;
- Correspondence:
| |
Collapse
|
19
|
Synthetic approaches for BF2-containing adducts of outstanding biological potential. A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Xu Y, Li H, Xu S, Liu X, Lin J, Chen H, Yuan Z. Light-Triggered Fluorescence Self-Reporting Nitric Oxide Release from Coumarin Analogues for Accelerating Wound Healing and Synergistic Antimicrobial Applications. J Med Chem 2021; 65:424-435. [PMID: 34918930 DOI: 10.1021/acs.jmedchem.1c01591] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) has an important class of endogenous diatomic molecules that play a key regulatory role in many physiological and biochemical processes. However, the type of nitrosamine NO donor stimulated by light has many advantages compared to the conventional NO donors such as diazeniumdiolates and S-nitrosothiols compounds, including easy synthesis, good stability, and controllable release. In addition, NO release can be regulated by light induction with a built-in calibration mechanism fluorescence. Here, we report that the migration and proliferation of human umbilical vein vascular endothelial cells could be accelerated by the light-triggered NO donors, leading to the angiogenesis. Meanwhile, the screened NO donor 3a with Levofloxacin (Lev) showed synergistic effects to eradicate Methicillin-resistant Staphylococcus aureus (MRSA) biofilms in vitro and treat bacteria-infected wound in vivo.
Collapse
Affiliation(s)
- Yue Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China
| | - Hua Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China
| | - Shufen Xu
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China.,Department of Oncology, Second Clinical Medical College of Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Xian Liu
- The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Jingjing Lin
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China
| | - Haiyan Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China
| |
Collapse
|
21
|
Liu J, Kang W, Wang W. Photocleavage-based Photoresponsive Drug Delivery. Photochem Photobiol 2021; 98:288-302. [PMID: 34861053 DOI: 10.1111/php.13570] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/27/2021] [Indexed: 02/06/2023]
Abstract
Targeted drug delivery has been extensively studied in the last decade, whereas both passive and active targeting strategies still face many challenges, such as off-target drug release. Light-responsive drug delivery systems have been developed with high controllability and spatio-temporal resolution to improve drug efficacy and reduce off-target drug release. Photoremovable protecting groups are light-responsive moieties that undergo irreversible photocleavage reactions upon light irradiation. They can be covalently linked to the molecule of interest to control its structure and function with light. In this review, we will summarize recent applications of photocleavage technologies in nanoparticle-based drug delivery for precise targeting and controlled drug release, with a highlight of strategies to achieve long-wavelength light excitation. A greater understanding of these mechanisms and emerging studies will help design more efficient photocleavage-based nanosystems to advance photoresponsive drug delivery.
Collapse
Affiliation(s)
- Jinzhao Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China.,HKU-Shenzhen Institute of Research and Innovation, Shenzhen, 518053, China
| | - Weirong Kang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China.,HKU-Shenzhen Institute of Research and Innovation, Shenzhen, 518053, China
| | - Weiping Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China.,HKU-Shenzhen Institute of Research and Innovation, Shenzhen, 518053, China
| |
Collapse
|
22
|
|
23
|
Long K, Han H, Kang W, Lv W, Wang L, Wang Y, Ge L, Wang W. One-photon red light-triggered disassembly of small-molecule nanoparticles for drug delivery. J Nanobiotechnology 2021; 19:357. [PMID: 34736466 PMCID: PMC8567723 DOI: 10.1186/s12951-021-01103-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Photoresponsive drug delivery can achieve spatiotemporal control of drug accumulation at desired sites. Long-wavelength light is preferable owing to its deep tissue penetration and low toxicity. One-photon upconversion-like photolysis via triplet-triplet energy transfer (TTET) between photosensitizer and photoresponsive group enables the use of long-wavelength light to activate short-wavelength light-responsive groups. However, such process requires oxygen-free environment to achieve efficient photolysis due to the oxygen quenching of triplet excited states. RESULTS Herein, we report a strategy that uses red light to trigger disassembly of small-molecule nanoparticles by one-photon upconversion-like photolysis for cancer therapy. A photocleavable trigonal molecule, BTAEA, self-assembled into nanoparticles and enclosed photosensitizer, PtTPBP. Such nanoparticles protected TTET-based photolysis from oxygen quenching in normoxia aqueous solutions, resulting in efficient red light-triggered BTAEA cleavage, dissociation of nanoparticles and subsequent cargo release. With paclitaxel as the model drug, the red light-triggered drug release system demonstrated promising anti-tumor efficacy both in vitro and in vivo. CONCLUSIONS This study provides a practical reference for constructing photoresponsive nanocarriers based on the one-photon upconversion-like photolysis.
Collapse
Affiliation(s)
- Kaiqi Long
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Dr Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Han Han
- Dr Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Weirong Kang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Dr Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wen Lv
- Dr Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Lang Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Liang Ge
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Weiping Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Dr Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
24
|
8-[4-(2-Hydroxypropane-2-yl)phenyl]-1,3,4,4,5,7-hexamethyl-4-boron-3a,4a-diaza-S-indacene. MOLBANK 2021. [DOI: 10.3390/m1286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
During recent years, the BODIPY core became a popular scaffold for designing photoremovable protecting groups (PPG). In this paper, we report the synthesis of a new molecule—8-[4-(2-hydroxypropane-2-yl)phenyl]-1,3,4,4,5,7-hexamethyl-4-boron-3a,4a-diaza-S-indacene—by the treatment of meso-(4-CO2Me-phenyl)-BODIPY with excess of MeMgI. The product was characterized by 1H, 13C NMR and HRMS. The combination of BODIPY core with tertiary benzilyc alcohol might be promising for utilizing this molecule as visible light removable PPG.
Collapse
|
25
|
Moskalensky AE, Karogodina TY, Vorobev AY, Sokolovski SG. Singlet oxygen luminescence detector based on low-cost InGaAs avalanche photodiode. HARDWAREX 2021; 10:e00224. [PMID: 35607681 PMCID: PMC9123435 DOI: 10.1016/j.ohx.2021.e00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/14/2021] [Accepted: 08/11/2021] [Indexed: 06/15/2023]
Abstract
Molecular oxygen excited to singlet state (Singlet oxygen, 1O2) becomes highly reactive and cytotoxic chemical. 1O2 is commonly generated by photoexcitation of dyes (photosensitizers), including the photodynamic therapy and diagnostics of cancer. However, the formation of singlet oxygen is often unwanted for various light-sensitive compounds, e.g. it causes the photobleaching of fluorescent probes. In either case, during a development of new photosensitive chemicals and drugs there is a need to evaluate the amount of 1O2 formed during photoexcitation. The direct approach in measuring the amount of singlet oxygen is based on the detection of its luminescence at 1270 nm. However, this luminescence is usually weak, which implies the use of highly sensitive single-photon detectors. Thus the existing instruments are commonly complicated and expensive. Here we suggest an approach and report a device to measure the 1O2 luminescence using low-cost InGaAs avalanche photodiode and simple electronics. The measurements can be performed in stationary (not time-resolved) mode in organic solvents such as tetrachloromethane (CCl4), ethanol and DMSO. In particular, we performed spectral-resolved measurements of the singlet oxygen luminescence in CCl4 with the device and demonstrated high complementarity to literature data. The simple setup allows to evaluate the efficiency (or speed) of singlet oxygen generation and hence facilitates the development and characterization of new photosensitizers and other photosensitive chemicals.
Collapse
|
26
|
Goodwin MJ, Zhang X, Shekleton TB, Kirr DA, Hannon HC, Harbron EJ. Amplifying the reactivity of BODIPY photoremovable protecting groups. Chem Commun (Camb) 2021; 57:10059-10062. [PMID: 34514485 DOI: 10.1039/d1cc04457e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugated polymer nanoparticles (CPNs or Pdots) are used to sensitize the photorelease reaction of a BODIPY photoremovable protecting group. Sensitization yields effective values of ελΦpr - the product of the extinction coefficient at the irradiation wavelength and the photorelease quantum yield - that are more than 60-fold greater than those measured upon direct excitation.
Collapse
Affiliation(s)
- Matthew J Goodwin
- Department of Chemistry, William & Mary, Williamsburg, Virginia, 23187-8795, USA.
| | - Xinzi Zhang
- Department of Chemistry, William & Mary, Williamsburg, Virginia, 23187-8795, USA.
| | - Tayli B Shekleton
- Department of Chemistry, William & Mary, Williamsburg, Virginia, 23187-8795, USA.
| | - Delaney A Kirr
- Department of Chemistry, William & Mary, Williamsburg, Virginia, 23187-8795, USA.
| | - Henry C Hannon
- Department of Chemistry, William & Mary, Williamsburg, Virginia, 23187-8795, USA.
| | - Elizabeth J Harbron
- Department of Chemistry, William & Mary, Williamsburg, Virginia, 23187-8795, USA.
| |
Collapse
|
27
|
Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JCK, Gaunt MJ. Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chem Rev 2021; 122:1752-1829. [PMID: 34546740 DOI: 10.1021/acs.chemrev.1c00357] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemically modified biomacromolecules-i.e., proteins, nucleic acids, glycans, and lipids-have become crucial tools in chemical biology. They are extensively used not only to elucidate cellular processes but also in industrial applications, particularly in the context of biopharmaceuticals. In order to enable maximum scope for optimization, it is pivotal to have a diverse array of biomacromolecule modification methods at one's disposal. Chemistry has driven many significant advances in this area, and especially recently, numerous novel visible-light-induced photochemical approaches have emerged. In these reactions, light serves as an external source of energy, enabling access to highly reactive intermediates under exceedingly mild conditions and with exquisite spatiotemporal control. While UV-induced transformations on biomacromolecules date back decades, visible light has the unmistakable advantage of being considerably more biocompatible, and a spectrum of visible-light-driven methods is now available, chiefly for proteins and nucleic acids. This review will discuss modifications of native functional groups (FGs), including functionalization, labeling, and cross-linking techniques as well as the utility of oxidative degradation mediated by photochemically generated reactive oxygen species. Furthermore, transformations at non-native, bioorthogonal FGs on biomacromolecules will be addressed, including photoclick chemistry and DNA-encoded library synthesis as well as methods that allow manipulation of the activity of a biomacromolecule.
Collapse
Affiliation(s)
- Vivian M Lechner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Manuel Nappi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick J Deneny
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah Folliet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John C K Chu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
28
|
Ryazantsev MN, Strashkov DM, Nikolaev DM, Shtyrov AA, Panov MS. Photopharmacological compounds based on azobenzenes and azoheteroarenes: principles of molecular design, molecular modelling, and synthesis. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Liu J, Peng Y, Wei W. Light-Controllable PROTACs for Temporospatial Control of Protein Degradation. Front Cell Dev Biol 2021; 9:678077. [PMID: 34350175 PMCID: PMC8326567 DOI: 10.3389/fcell.2021.678077] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/14/2021] [Indexed: 12/25/2022] Open
Abstract
PROteolysis-TArgeting Chimeras (PROTACs) is an emerging and promising approach to target intracellular proteins for ubiquitination-mediated degradation, including those so-called undruggable protein targets, such as transcriptional factors and scaffold proteins. To date, plenty of PROTACs have been developed to degrade various disease-relevant proteins, such as estrogen receptor (ER), androgen receptor (AR), RTK, and CDKs. However, the on-target off-tissue and off-target effect is one of the major limitation that prevents the usage of PROTACs in clinic. To this end, we and several other groups have recently developed light-controllable PROTACs, as the representative for the third generation controllable PROTACs, by using either photo-caging or photo-switch approaches. In this review, we summarize the emerging light-controllable PROTACs and the prospective for other potential ways to achieve temporospatial control of PROTACs.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Yunhua Peng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
30
|
Reynders M, Trauner D. Optical control of targeted protein degradation. Cell Chem Biol 2021; 28:969-986. [PMID: 34115971 DOI: 10.1016/j.chembiol.2021.05.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/12/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022]
Abstract
Molecular glues and proteolysis targeting chimeras (PROTACs) have emerged as small-molecule tools that selectively induce the degradation of a chosen protein and have shown therapeutic promise. Recently, several approaches employing light as an additional stimulus to control induced protein degradation have been reported. Here, we analyze the principles guiding the design of such systems, provide a survey of the literature published to date, and discuss opportunities for further development. Light-responsive degraders enable the precise temporal and spatial control of protein levels, making them useful research tools but also potential candidates for human precision medicine.
Collapse
Affiliation(s)
- Martin Reynders
- Department of Chemistry, New York University, New York, NY 10003, USA; Department of Chemistry, Ludwig Maximilians University of Munich, 81377 Munich, Germany
| | - Dirk Trauner
- Department of Chemistry, New York University, New York, NY 10003, USA; Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA; NYU Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
31
|
Zheng Y, Ye Z, Liu Z, Yang W, Zhang X, Yang Y, Xiao Y. Nitroso-Caged Rhodamine: A Superior Green Light-Activatable Fluorophore for Single-Molecule Localization Super-Resolution Imaging. Anal Chem 2021; 93:7833-7842. [PMID: 34027666 DOI: 10.1021/acs.analchem.1c00175] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The evolution of super-resolution imaging techniques, especially single-molecule localization microscopy, demands the engineering of switchable fluorophores with labeling functionality. Yet, the switching of these fluorophores depends on the exterior conditions of UV light and enhancing buffers, which is bioincompatible for living-cell applications. Herein, to surpass these limitations, a nitroso-caging strategy is employed to cage rhodamines into leuco forms, which for the first time, is discovered to uncage highly bright zwitterions by green light. Further, clickable construction grants the specificity and versatility for labeling various components in living cells. The simultaneous photoactivation and excitation of these novel probes allow for single-laser super-resolution imaging without any harmful additives. Super-resolution imaging of microtubules in fixed cells or mitochondria and the distribution of glycans and H2B proteins in living cells are achieved at a molecular scale with robust integrity. We envision that our nitroso-caging probes would set a platform for the development of future visible-activatable probes.
Collapse
Affiliation(s)
- Ying Zheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Zhiwei Ye
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Zengjin Liu
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Wei Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xinfu Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
32
|
Zeng S, Zhang H, Shen Z, Huang W. Photopharmacology of Proteolysis-Targeting Chimeras: A New Frontier for Drug Discovery. Front Chem 2021; 9:639176. [PMID: 33777902 PMCID: PMC7987681 DOI: 10.3389/fchem.2021.639176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Photopharmacology is an emerging field that uses light to precisely control drug activity. This strategy promises to improve drug specificity for reducing off-target effects. Proteolysis-targeting chimeras (PROTACs) are an advanced technology engineered to degrade pathogenic proteins through the ubiquitin-proteasome system for disease treatment. This approach has the potential to target the undruggable proteome via event-driven pharmacology. Recently, the combination strategy of photopharmacology and PROTACs has gained tremendous momentum for its use in the discovery and development of new therapies. This review systematically focuses on PROTAC-based photopharmacology. Herein, we provide an overview of the new and vibrant research on photoPROTACs, discuss the advantages and disadvantages of this approach as a biological tool, and outline the challenges it faces in a clinical setting.
Collapse
Affiliation(s)
- Shenxin Zeng
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| | - Hongjie Zhang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| | - Zhengrong Shen
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| | - Wenhai Huang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
33
|
Vickerman B, O’Banion CP, Tan X, Lawrence DS. Light-Controlled Release of Therapeutic Proteins from Red Blood Cells. ACS CENTRAL SCIENCE 2021; 7:93-103. [PMID: 33532572 PMCID: PMC7844852 DOI: 10.1021/acscentsci.0c01151] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Indexed: 05/09/2023]
Abstract
Protein therapeutics are a powerful class of drugs known for their selectivity and potency. However, the potential efficacy of these therapeutics is commonly offset by short circulatory half-lives and undesired action at otherwise healthy tissue. We describe herein a targeted protein delivery system that employs engineered red blood cells (RBCs) as carriers and light as the external trigger that promotes hemolysis and drug release. RBCs internally loaded with therapeutic proteins are readily surface modified with a dormant hemolytic peptide. The latter is activated via easily assigned wavelengths that extend into the optical window of tissue. We have demonstrated that photorelease transpires with spatiotemporal control and that the liberated proteins display the anticipated biological effects in vitro. Furthermore, we have confirmed targeted delivery of a clot-inducing enzyme in a mouse model. Finally, we anticipate that this strategy is not limited to RBC carriers but also should be applicable to nano- and microtransporters comprised of bilayer lipid membranes.
Collapse
Affiliation(s)
- Brianna
M. Vickerman
- Department
of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Colin P. O’Banion
- Division
of Chemical Biology and Medicinal Chemistry, Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Xianming Tan
- Department
of Biostatistics, Lineberger Comprehensive Cancer, Center University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David. S. Lawrence
- Department
of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Division
of Chemical Biology and Medicinal Chemistry, Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department
of Pharmacology and Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
34
|
Ahmadzadeh K, Scott M, Brand M, Vahtras O, Li X, Rinkevicius Z, Norman P. Efficient implementation of isotropic cubic response functions for two-photon absorption cross sections within the self-consistent field approximation. J Chem Phys 2021; 154:024111. [PMID: 33445884 DOI: 10.1063/5.0031851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Within the self-consistent field approximation, computationally tractable expressions for the isotropic second-order hyperpolarizability have been derived and implemented for the calculation of two-photon absorption cross sections. The novel tensor average formulation presented in this work allows for the evaluation of isotropic damped cubic response functions using only ∼3.3% (one-photon off-resonance regions) and ∼10% (one-photon resonance regions) of the number of auxiliary Fock matrices required when explicitly calculating all the needed individual tensor components. Numerical examples of the two-photon absorption cross section in the one-photon off-resonance and resonance regions are provided for alanine-tryptophan and 2,5-dibromo-1,4-bis(2-(4-diphenylaminophenyl)vinyl)-benzene. Furthermore, a benchmark set of 22 additional small- and medium-sized organic molecules is considered. In all these calculations, a quantitative assessment is made of the reduced and approximate forms of the cubic response function in the one-photon off-resonance regions and results demonstrate a relative error of less than ∼5% when using the reduced expression as compared to the full form of the isotropic cubic response function.
Collapse
Affiliation(s)
- Karan Ahmadzadeh
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Mikael Scott
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Manuel Brand
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Olav Vahtras
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Xin Li
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Zilvinas Rinkevicius
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Patrick Norman
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
35
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
36
|
Josa‐Culleré L, Llebaria A. In the Search for Photocages Cleavable with Visible Light: An Overview of Recent Advances and Chemical Strategies. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000253] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Laia Josa‐Culleré
- Laboratory of Medicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| | - Amadeu Llebaria
- Laboratory of Medicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| |
Collapse
|
37
|
Bollu A, Hassan MK, Dixit M, Sharma NK. The 2'-caged-tethered-siRNA shows light-dependent temporal controlled RNAi activity for GFP gene into HEK293T cells. Bioorg Med Chem 2020; 30:115932. [PMID: 33316720 DOI: 10.1016/j.bmc.2020.115932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 11/19/2022]
Abstract
Small interfering RNA (siRNA) exhibits gene-specific RNAi activity by the formation of RISC complex with mRNA of gene. The structural modification of siRNA at appropriate positions affects the structure of RISC complex and then RNAi activity. The modified siRNA are mostly prepared from the incorporation of sugar ring modified, and nucleobase modified RNA nucleotides. It is learned that the introduction of the sterically hindered nucleoside at the specific position of siRNA, severely affects siRNA-RISC complex formation. This report describes the syntheses of bulkier siRNA from 2'-caged-tethered-siRNAs, containing bulkier photolabile protecting group (o-nitrobenzyl) at 2'-position of ribose nucleoside. Importantly, these 2'-caged-siRNAs exhibit the light-dependent RNA interference (RNAi) activity into HEK293T cells for the GFP gene expression. The 2'-caged-siRNAs are synthesized by caging the sense and antisense strand of siRNA. The biochemical evaluations of these caged-siRNAs show that antisense-strand caged-siRNAs decrease RNAi activity temporarily in dark while enhancing RNAi activity, almost like control, after exposure withUV- light. However, 2'-caged sense strand siRNA increase RNAi activity temporarily while decreasing RNAi activity after exposure with light. These caged-siRNAs are also stable in the serum (fetal bovine serum) as like native siRNA. Hence these results strongly support that 2'-caged-tethered-siRNAs are promising analogues to control RNAi activity by UV-light.
Collapse
Affiliation(s)
- Amarnath Bollu
- National Institute of Science Education and Research (NISER), SCS, Jatni-Campus, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Mumbai 400 094, India
| | - Md Khurshidul Hassan
- National Institute of Science Education and Research (NISER), SBS, Jatni-Campus, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Mumbai 400 094, India
| | - Manjusha Dixit
- National Institute of Science Education and Research (NISER), SBS, Jatni-Campus, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Mumbai 400 094, India
| | - Nagendra K Sharma
- National Institute of Science Education and Research (NISER), SCS, Jatni-Campus, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Mumbai 400 094, India.
| |
Collapse
|
38
|
Lämmle CA, Varady A, Müller TG, Sturtzel C, Riepl M, Mathes B, Eichhorst J, Sporbert A, Lehmann M, Kräusslich HG, Distel M, Broichhagen J. Photocaged Hoechst Enables Subnuclear Visualization and Cell Selective Staining of DNA in vivo. Chembiochem 2020; 22:548-556. [PMID: 32974998 PMCID: PMC7894298 DOI: 10.1002/cbic.202000465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/17/2020] [Indexed: 12/19/2022]
Abstract
Selective targeting of DNA by means of fluorescent labeling has become a mainstay in the life sciences. While genetic engineering serves as a powerful technique and allows the visualization of nucleic acid by using DNA‐targeting fluorescent fusion proteins in a cell‐type‐ and subcellular‐specific manner, it relies on the introduction of foreign genes. On the other hand, DNA‐binding small fluorescent molecules can be used without genetic engineering, but they are not spatially restricted. Herein, we report a photocaged version of the DNA dye Hoechst33342 (pcHoechst), which can be uncaged by using UV to blue light for the selective staining of chromosomal DNA in subnuclear regions of live cells. Expanding its application to a vertebrate model organism, we demonstrate uncaging in epithelial cells and short‐term cell tracking in vivo in zebrafish. We envision pcHoechst as a valuable tool for targeting and interrogating DNA with precise spatiotemporal resolution in living cells and wild‐type organisms.
Collapse
Affiliation(s)
- Carina A Lämmle
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Adam Varady
- St. Anna Children's Cancer Research Institute, Innovative Cancer Models, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Thorsten G Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Caterina Sturtzel
- St. Anna Children's Cancer Research Institute, Innovative Cancer Models, Zimmermannplatz 10, 1090, Vienna, Austria.,Zebrafish Platform Austria for preclinical drug screening (ZANDR), Zimmermannplatz 10, 1090, Vienna, Austria
| | - Michael Riepl
- St. Anna Children's Cancer Research Institute, Innovative Cancer Models, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Bettina Mathes
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Jenny Eichhorst
- Department of Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Anje Sporbert
- Advanced Light Microscopy, Max Delbrück Centrum for Molecular Medicine Berlin in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Martin Lehmann
- Department of Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Martin Distel
- St. Anna Children's Cancer Research Institute, Innovative Cancer Models, Zimmermannplatz 10, 1090, Vienna, Austria.,Zebrafish Platform Austria for preclinical drug screening (ZANDR), Zimmermannplatz 10, 1090, Vienna, Austria
| | - Johannes Broichhagen
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany.,Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125, Berlin, Germany
| |
Collapse
|
39
|
Lv W, Long K, Yang Y, Chen S, Zhan C, Wang W. A Red Light-Triggered Drug Release System Based on One-Photon Upconversion-Like Photolysis. Adv Healthc Mater 2020; 9:e2001118. [PMID: 32985134 DOI: 10.1002/adhm.202001118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/03/2020] [Indexed: 12/27/2022]
Abstract
Photoresponsive drug release systems can enhance drug accumulation at the sites where light is applied. Nowadays, the photocleavable groups used in the systems usually require ultraviolet or blue light irradiation, which limits tissue penetration depth and is harmful to normal cells and living bodies. A one-photon upconversion-like photolysis strategy, which can cleave green light-activatable prodrugs with red light at the presence of a red light-excitable photosensitizer in organic solvents, is developed. However, both the prodrug and photosensitizer are hydrophobic and their energy transfer process is sensitive to oxygen molecules. Here, a simple strategy to address these problems by loading the two components in biocompatible and biodegradable polymeric micelles, is presented. The developed low-irradiance red light-triggered drug release system has a size around 40 nm and exhibits good stability in aqueous solutions. The micellar encapsulation protects the photolysis reaction from oxygen quenching in normoxia aqueous solutions. The therapeutic effect of the system enhanced by the redlight irradiation is demonstrated through in vitro and in vivo studies, indicating promising potential in cancer therapy. The study provides the first example and also an important reference for applying one-photon upconversion-like photolysis in biomedical applications.
Collapse
Affiliation(s)
- Wen Lv
- Dr. Li Dak‐Sum Research Centre The University of Hong Kong Hong Kong P. R. China
| | - Kaiqi Long
- Dr. Li Dak‐Sum Research Centre The University of Hong Kong Hong Kong P. R. China
- Department of Pharmacology and Pharmacy Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong P. R. China
| | - Yang Yang
- Department of Pharmacology School of Basic Medical Sciences and State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200032 P. R. China
| | - Sijie Chen
- Dr. Li Dak‐Sum Research Centre The University of Hong Kong Hong Kong P. R. China
- Ming Wai Lau Centre for Reparative Medicine Karolinska Institute Hong Kong P. R. China
| | - Changyou Zhan
- Department of Pharmacology School of Basic Medical Sciences and State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200032 P. R. China
| | - Weiping Wang
- Dr. Li Dak‐Sum Research Centre The University of Hong Kong Hong Kong P. R. China
- Department of Pharmacology and Pharmacy Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong P. R. China
| |
Collapse
|
40
|
Hogenkamp F, Hilgers F, Knapp A, Klaus O, Bier C, Binder D, Jaeger KE, Drepper T, Pietruszka J. Effect of Photocaged Isopropyl β-d-1-thiogalactopyranoside Solubility on the Light Responsiveness of LacI-controlled Expression Systems in Different Bacteria. Chembiochem 2020; 22:539-547. [PMID: 32914927 PMCID: PMC7894499 DOI: 10.1002/cbic.202000377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/31/2020] [Indexed: 01/02/2023]
Abstract
Photolabile protecting groups play a significant role in controlling biological functions and cellular processes in living cells and tissues, as light offers high spatiotemporal control, is non‐invasive as well as easily tuneable. In the recent past, photo‐responsive inducer molecules such as 6‐nitropiperonyl‐caged IPTG (NP‐cIPTG) have been used as optochemical tools for Lac repressor‐controlled microbial expression systems. To further expand the applicability of the versatile optochemical on‐switch, we have investigated whether the modulation of cIPTG water solubility can improve the light responsiveness of appropriate expression systems in bacteria. To this end, we developed two new cIPTG derivatives with different hydrophobicity and demonstrated both an easy applicability for the light‐mediated control of gene expression and a simple transferability of this optochemical toolbox to the biotechnologically relevant bacteria Pseudomonas putida and Bacillus subtilis. Notably, the more water‐soluble cIPTG derivative proved to be particularly suitable for light‐mediated gene expression in these alternative expression hosts.
Collapse
Affiliation(s)
- Fabian Hogenkamp
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Andreas Knapp
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Oliver Klaus
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Claus Bier
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Dennis Binder
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany.,Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany.,Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich, Stetternicher Forst, 52426, Jülich, Germany
| |
Collapse
|
41
|
Welleman IM, Hoorens MWH, Feringa BL, Boersma HH, Szymański W. Photoresponsive molecular tools for emerging applications of light in medicine. Chem Sci 2020; 11:11672-11691. [PMID: 34094410 PMCID: PMC8162950 DOI: 10.1039/d0sc04187d] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/14/2020] [Indexed: 12/29/2022] Open
Abstract
Light-based therapeutic and imaging modalities, which emerge in clinical applications, rely on molecular tools, such as photocleavable protecting groups and photoswitches that respond to photonic stimulus and translate it into a biological effect. However, optimisation of their key parameters (activation wavelength, band separation, fatigue resistance and half-life) is necessary to enable application in the medical field. In this perspective, we describe the applications scenarios that can be envisioned in clinical practice and then we use those scenarios to explain the necessary properties that the photoresponsive tools used to control biological function should possess, highlighted by examples from medical imaging, drug delivery and photopharmacology. We then present how the (photo)chemical parameters are currently being optimized and an outlook is given on pharmacological aspects (toxicity, solubility, and stability) of light-responsive molecules. With these interdisciplinary insights, we aim to inspire the future directions for the development of photocontrolled tools that will empower clinical applications of light.
Collapse
Affiliation(s)
- Ilse M Welleman
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen Groningen The Netherlands
- Stratingh Institute for Chemistry, University of Groningen Groningen The Netherlands
| | - Mark W H Hoorens
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen Groningen The Netherlands
- Stratingh Institute for Chemistry, University of Groningen Groningen The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen Groningen The Netherlands
| | - Hendrikus H Boersma
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen Groningen The Netherlands
- Departments of Clinical Pharmacy and Pharmacology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen Groningen The Netherlands
| | - Wiktor Szymański
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen Groningen The Netherlands
- Stratingh Institute for Chemistry, University of Groningen Groningen The Netherlands
| |
Collapse
|
42
|
Nakad EA, Chaud J, Morville C, Bolze F, Specht A. Monitoring of uncaging processes by designing photolytical reactions. Photochem Photobiol Sci 2020; 19:1122-1133. [PMID: 32756690 DOI: 10.1039/d0pp00169d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The use of photolabile protecting groups (PPGs) has been growing in emphasis for decades, and nowadays they enable cutting-edge results in numerous fields ranging from organic synthesis to neurosciences. PPGs are chemical entities that can be conjugated to a biomolecule to hide its biological activity, forming a stable so called "caged compound". This conjugate can be simply cleaved by light and therefore, the functionality of the biomolecule is restored with the formation of a PPG by-product. However, there is a sizeable need for PPGs that are able to quantify the "uncaging" process. In this review, we will discuss several strategies leading to an acute quantification of the uncaging events by fluorescence. In particular, we will focus on how molecular engineering of PPG could open new opportunities by providing easy access to photoactivation protocols.
Collapse
Affiliation(s)
- E Abou Nakad
- Laboratoire de Conception et Application de Molécules Bioactives, Equipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000, Strasbourg, France
| | - J Chaud
- Laboratoire de Conception et Application de Molécules Bioactives, Equipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000, Strasbourg, France
| | - C Morville
- Laboratoire de Conception et Application de Molécules Bioactives, Equipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000, Strasbourg, France
| | - F Bolze
- Laboratoire de Conception et Application de Molécules Bioactives, Equipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000, Strasbourg, France.
| | - A Specht
- Laboratoire de Conception et Application de Molécules Bioactives, Equipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000, Strasbourg, France
| |
Collapse
|
43
|
Jung N, Diehl F, Jonas U. Thiol-Substituted Poly(2-oxazoline)s with Photolabile Protecting Groups-Tandem Network Formation by Light. Polymers (Basel) 2020; 12:E1767. [PMID: 32784610 PMCID: PMC7463461 DOI: 10.3390/polym12081767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023] Open
Abstract
Herein, we present a novel polymer architecture based on poly(2-oxazoline)s bearing protected thiol functionalities, which can be selectively liberated by irradiation with UV light. Whereas free thiol groups can suffer from oxidation or other spontaneous reactions that degrade polymer performance, this strategy with masked thiol groups offers the possibility of photodeprotection on demand with spatio-temporal control while maintaining polymer integrity. Here, we exploit this potential for a tandem network formation upon irradiation with UV light by thiol deprotection and concurrent crosslinking via thiol-ene coupling. The synthesis of the novel oxazoline monomer 2-{2-[(2-nitrobenzyl)thio]ethyl}-4,5-dihydrooxazole (NbMEtOxa) carrying 2-nitrobenzyl-shielded thiol groups and its cationic ring-opening copolymerization at varying ratios with 2-ethyl-2-oxazoline (EtOxa) is described. The tandem network formation was exemplarily demonstrated with the photoinitator 2-hydroxy-2-methylpropiophenone (HMPP) and pentaerythritol tetraacrylate (PETA), a commercially available, tetrafunctional vinyl crosslinker. The key findings of the conducted experiments indicate that a ratio of ~10% NbMEtOxa repeat units in the polymer backbone is sufficient for network formation and in-situ gelation in N,N-dimethylformamide.
Collapse
Affiliation(s)
| | | | - Ulrich Jonas
- Macromolecular Chemistry, Department Chemistry-Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57076 Siegen, Germany; (N.J.); (F.D.)
| |
Collapse
|
44
|
Martínek M, Váňa J, Šebej P, Navrátil R, Slanina T, Ludvíková L, Roithová J, Klán P. Photochemistry of a 9‐Dithianyl‐Pyronin Derivative: A Cornucopia of Reaction Intermediates Lead to Common Photoproducts. Chempluschem 2020; 85:2230-2242. [DOI: 10.1002/cplu.202000370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/12/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Marek Martínek
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
- RECETOX Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
| | - Jiří Váňa
- Institute of Organic Chemistry and Technology Faculty of Chemical Technology University of Pardubice Studentská 573 532 10 Pardubice Czech Republic
| | - Peter Šebej
- RECETOX Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
| | - Rafael Navrátil
- Department of Organic Chemistry Faculty of Science Charles University Hlavova 2030/8 128 43 Prague Czech Republic
| | - Tomáš Slanina
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
- RECETOX Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
| | - Lucie Ludvíková
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
- RECETOX Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
| | - Jana Roithová
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Petr Klán
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
- RECETOX Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
| |
Collapse
|
45
|
Fuchter MJ. On the Promise of Photopharmacology Using Photoswitches: A Medicinal Chemist's Perspective. J Med Chem 2020; 63:11436-11447. [PMID: 32511922 DOI: 10.1021/acs.jmedchem.0c00629] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Photopharmacology is a growing area of endeavor that employs photoswitchable ligands to allow for light-dependent pharmacological activity. By coupling light to therapeutic action, improved spatial and temporal selectivity can be achieved and subsequently harnessed for new concepts in therapy. Tremendous progress has already been made, with photopharmacological agents now reported against a wide array of target classes and light-dependent results demonstrated in a range of live cell and animal models. Several challenges remain, however, especially in order for photopharmacology to truly impact the clinical management of disease. This Perspective aims to summarize these challenges, particularly with attention to the medicinal chemistry that will be unavoidably required for the further translation of these agents/approaches. By clearly defining challenges for drug hunters, it is hoped that further research into the medicinal chemistry of photopharmacological agents will be stimulated, ultimately enabling full realization of the huge potential for this exciting field.
Collapse
Affiliation(s)
- Matthew J Fuchter
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, United Kingdom
| |
Collapse
|
46
|
Spiryova DV, Vorobev AY, Klimontov VV, Koroleva EA, Moskalensky AE. Optical uncaging of ADP reveals the early calcium dynamics in single, freely moving platelets. BIOMEDICAL OPTICS EXPRESS 2020; 11:3319-3330. [PMID: 32637257 PMCID: PMC7316007 DOI: 10.1364/boe.392745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Platelet activation is considered to be a cornerstone in pathogenesis of cardiovascular disease. The assessment of platelet activation at the single-cell level is a promising approach for the research of platelet function in physiological and pathological conditions. Previous studies used the immobilization of platelets on the surface, which significantly alters the activation signaling. Here we show that the use of photolabile "caged" analog of ADP allows one to track the very early stage of platelet activation in single, freely moving cells. In this approach, the diffusion step and ADP receptor ligation are separated in time, and a millisecond-timescale optical pulse may trigger the activation. The technique allows us to measure the delay (lag time) between the stimulus and calcium response in platelets. We also propose a simple model function for calcium peaks, which is in good agreement with the measured data. The proposed technique and model function can be used for in-depth studies of platelet physiology.
Collapse
Affiliation(s)
| | - Alexei Yu. Vorobev
- Novosibirsk State University, Novosibirsk, 630090, Russia
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk, 630090, Russia
| | - Vadim V. Klimontov
- Novosibirsk State University, Novosibirsk, 630090, Russia
- Research Institute of Clinical and Experimental Lymphology – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630117, Russia
| | - Elena A. Koroleva
- Novosibirsk State University, Novosibirsk, 630090, Russia
- Research Institute of Clinical and Experimental Lymphology – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630117, Russia
| | - Alexander E. Moskalensky
- Novosibirsk State University, Novosibirsk, 630090, Russia
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk, 630090, Russia
| |
Collapse
|
47
|
Kand D, Liu P, Navarro MX, Fischer LJ, Rousso-Noori L, Friedmann-Morvinski D, Winter AH, Miller EW, Weinstain R. Water-Soluble BODIPY Photocages with Tunable Cellular Localization. J Am Chem Soc 2020; 142:4970-4974. [PMID: 32115942 PMCID: PMC7302507 DOI: 10.1021/jacs.9b13219] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Photoactivation of
bioactive molecules allows manipulation of cellular
processes with high spatiotemporal precision. The recent emergence
of visible-light excitable photoprotecting groups has the potential
to further expand the established utility of the photoactivation strategy
in biological applications by offering higher tissue penetration,
diminished phototoxicity, and compatibility with other light-dependent
techniques. Nevertheless, a critical barrier to such applications
remains the significant hydrophobicity of most visible-light excitable
photocaging groups. Here, we find that applying the conventional 2,6-sulfonation
to meso-methyl BODIPY photocages is incompatible
with their photoreaction due to an increase in the excited state barrier
for photorelease. We present a simple, remote sulfonation solution
to BODIPY photocages that imparts water solubility and provides control
over cellular permeability while retaining their favorable spectroscopic
and photoreaction properties. Peripherally disulfonated BODIPY photocages
are cell impermeable, making them useful for modulation of cell-surface
receptors, while monosulfonated BODIPY retains the ability to cross
the cellular membrane and can modulate intracellular targets. This
new approach is generalizable for controlling BODIPY localization
and was validated by sensitization of mammalian cells and neurons
by visible-light photoactivation of signaling molecules.
Collapse
Affiliation(s)
| | | | | | - Logan J Fischer
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| | | | | | - Arthur H Winter
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| | | | | |
Collapse
|