1
|
Singh A, Ratnapriya R. Integration of multiomic data identifies core-module of inherited-retinal diseases. Hum Mol Genet 2025:ddaf001. [PMID: 39797395 DOI: 10.1093/hmg/ddaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Human diseases with similar phenotypes can be interconnected through shared biological pathways, genes, or molecular mechanisms. Inherited retinal diseases (IRDs) cause photoreceptor dysfunction due to mutations in approximately 300 genes, affecting visual transduction, photoreceptor morphogenesis, and transcription factors, suggesting common pathobiological mechanisms. This study examined the functional relationship between known IRDs genes by integrating binding sites and gene expression data from the key photoreceptor transcription factors (TFs), Crx and Nrl. We show that the targets of these TFs were enriched in IRDs causal genes. Co-expression network analysis revealed that IRD-centric networks were disrupted when Crx and Nrl were knocked out. Finally, we identified a highly connected core module comprising 14 IRD and 39 target genes, of which 29 were dysregulated in the rod photoreceptors of the four IRD mouse models. These findings offer a network-based interpretation of IRDs, aiding in the identification of common mechanisms, prioritizing genes for novel disease gene identification, and informing the development of gene-agnostic therapies for IRDs.
Collapse
Affiliation(s)
- Ajeet Singh
- Department of Ophthalmology, Baylor College of Medicine, 6565 Fannin St, NC205, Houston, TX 77030 United States
| | - Rinki Ratnapriya
- Department of Ophthalmology, Baylor College of Medicine, 6565 Fannin St, NC205, Houston, TX 77030 United States
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 6565 Fannin St, NC205, Houston, TX 77030 United States
| |
Collapse
|
2
|
Barbelanne M, Lu Y, Kumar K, Zhang X, Li C, Park K, Warner A, Xu XZS, Shaham S, Leroux MR. C. elegans PPEF-type phosphatase (Retinal degeneration C ortholog) functions in diverse classes of cilia to regulate nematode behaviors. Sci Rep 2024; 14:28347. [PMID: 39550471 PMCID: PMC11569196 DOI: 10.1038/s41598-024-79057-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024] Open
Abstract
Primary (non-motile) cilia represent structurally and functionally diverse organelles whose roles as specialized cellular antenna are central to animal cell signaling pathways, sensory physiology and development. An ever-growing number of ciliary proteins, including those found in vertebrate photoreceptors, have been uncovered and linked to human disorders termed ciliopathies. Here, we demonstrate that an evolutionarily-conserved PPEF-family serine-threonine phosphatase, not functionally linked to cilia in any organism but associated with rhabdomeric (non-ciliary) photoreceptor degeneration in the Drosophila rdgC (retinal degeneration C) mutant, is a bona fide ciliary protein in C. elegans. The nematode protein, PEF-1, depends on transition zone proteins, which make up a 'ciliary gate' in the proximal-most region of the cilium, for its compartmentalization within cilia. Animals lacking PEF-1 protein function display structural defects to several types of cilia, including potential degeneration of microtubules. They also exhibit anomalies to cilium-dependent behaviors, including impaired responses to chemical, temperature, light, and noxious CO2 stimuli. Lastly, we demonstrate that PEF-1 function depends on conserved myristoylation and palmitoylation signals. Collectively, our findings broaden the role of PPEF proteins to include cilia, and suggest that the poorly-characterized mammalian PPEF1 and PPEF2 orthologs may also have ciliary functions and thus represent ciliopathy candidates.
Collapse
Affiliation(s)
- Marine Barbelanne
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Yun Lu
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Keerthana Kumar
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Xinxing Zhang
- Life Sciences Institute, Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Kwangjin Park
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Adam Warner
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - X Z Shawn Xu
- Life Sciences Institute, Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
3
|
Zhao X, Jin T, Ji X, Zhang Q, Zhang X, Wu Z, Li Z, Yang H. Wdr17 Regulates Cell Proliferation, Cell Cycle Progression and Apoptosis in Mouse Spermatocyte Cell Line. Animals (Basel) 2024; 14:1418. [PMID: 38791636 PMCID: PMC11117263 DOI: 10.3390/ani14101418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
We identified Wdr17 as a highly expressed gene in pachytene spermatocytes by transcriptomic analysis of mouse testis. Germ cell-deficient infertile mouse models had significantly reduced Wdr17 expression. We performed gene interference and overexpression in the mouse spermatocyte cell line GC-2spd(ts) and investigated how Wdr17 affects spermatocyte growth and development. Our results showed that Wdr17 suppression significantly decreased cell growth rate and increased cell apoptosis in GC-2spd(ts) cells. Wdr17 suppression also arrested the cell cycle at the G1 phase. On the contrary, Wdr17 overexpression significantly promoted cell proliferation and inhibited cell apoptosis in GC-2spd(ts) cells. More cells were enriched at the S stage with a concomitant reduction of cells at the G1 stage. Wdr17 promotes mouse spermatocyte proliferation by advancing cell cycle progression and inhibiting cell apoptosis, indicating its potential role in regulating spermatogenesis in the mouse.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (T.J.); (X.J.); (Q.Z.); (X.Z.); (Z.W.)
| | - Huaqiang Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (T.J.); (X.J.); (Q.Z.); (X.Z.); (Z.W.)
| |
Collapse
|
4
|
Jing S, Yi X. Exome sequencing reveals PPEF2 variant associated with high myopia. Gene 2024; 897:148091. [PMID: 38110044 DOI: 10.1016/j.gene.2023.148091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023]
Abstract
High myopia (HM) is a serious blinding eye disease, and genetic factors play an important role in the development of HM. In this study, whole exome sequencing (WES) was used to identify a novel variant c.A875G of the PPEF2 for a large Uyghur family with nonsyndromic HM. The variant was verified to cosegregate with HM in the family using Sanger sequencing. Another novel variant c.1959C > G in PPEF2 was identified in one of 100 sporadic cases of HM by multiplex PCR targeted amplicon sequencing (MTA-seq). The Ppef2 was verified that mainly expressed in the retinal pigment epithelium (RPE), choroid and retina tissues. Immunofluorescence (IF) and immunohistochemistry (IHC) assays showed that the PPEF2 was strongly expressed in the inner segment layer formed by photoreceptor protrusions, as well as in the outer nuclear layer. Compared with the wild-type, the c.A875G resulted in reduced protein levels but had no effect on protein subcellular localization in cells. In addition, the c.A875G variant resulted in a decreased migratory and proliferative capacity but promoted apoptosis in cells. In summary, PPEF2 was identified as a novel HM-causing gene, and this variant in PPEF2 might cause HM by regulating the migration, proliferation and apoptosis of myopia-related cells.
Collapse
Affiliation(s)
- Sili Jing
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xian, 710004, China; Ophthalmology, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang, China
| | - Xianglong Yi
- Ophthalmology, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang, China.
| |
Collapse
|
5
|
Zhou X, Zhang J, Ding Y, Huang H, Li Y, Chen W. Predicting late-stage age-related macular degeneration by integrating marginally weak SNPs in GWA studies. Front Genet 2023; 14:1075824. [PMID: 37065470 PMCID: PMC10101437 DOI: 10.3389/fgene.2023.1075824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/17/2023] [Indexed: 04/18/2023] Open
Abstract
Introduction: Age-related macular degeneration (AMD) is a progressive neurodegenerative disease and the leading cause of blindness in developed countries. Current genome-wide association studies (GWAS) for late-stage age-related macular degeneration are mainly single-marker-based approaches, which investigate one Single-Nucleotide Polymorphism (SNP) at a time and postpone the integration of inter-marker Linkage-disequilibrium (LD) information in the downstream fine mappings. Recent studies showed that directly incorporating inter-marker connection/correlation into variants detection can help discover novel marginally weak single-nucleotide polymorphisms, which are often missed in conventional genome-wide association studies, and can also help improve disease prediction accuracy. Methods: Single-marker analysis is performed first to detect marginally strong single-nucleotide polymorphisms. Then the whole-genome linkage-disequilibrium spectrum is explored and used to search for high-linkage-disequilibrium connected single-nucleotide polymorphism clusters for each strong single-nucleotide polymorphism detected. Marginally weak single-nucleotide polymorphisms are selected via a joint linear discriminant model with the detected single-nucleotide polymorphism clusters. Prediction is made based on the selected strong and weak single-nucleotide polymorphisms. Results: Several previously identified late-stage age-related macular degeneration susceptibility genes, for example, BTBD16, C3, CFH, CFHR3, HTARA1, are confirmed. Novel genes DENND1B, PLK5, ARHGAP45, and BAG6 are discovered as marginally weak signals. Overall prediction accuracy of 76.8% and 73.2% was achieved with and without the inclusion of the identified marginally weak signals, respectively. Conclusion: Marginally weak single-nucleotide polymorphisms, detected from integrating inter-marker linkage-disequilibrium information, may have strong predictive effects on age-related macular degeneration. Detecting and integrating such marginally weak signals can help with a better understanding of the underlying disease-development mechanisms for age-related macular degeneration and more accurate prognostics.
Collapse
Affiliation(s)
- Xueping Zhou
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jipeng Zhang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Heng Huang
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yanming Li
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas, KS, United States
| | - Wei Chen
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Gessler S, Guthmann C, Schuler V, Lilienkamp M, Walz G, Yakulov TA. Control of Directed Cell Migration after Tubular Cell Injury by Nucleotide Signaling. Int J Mol Sci 2022; 23:ijms23147870. [PMID: 35887219 PMCID: PMC9322613 DOI: 10.3390/ijms23147870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) is a common complication of severe human diseases, resulting in increased morbidity and mortality as well as unfavorable long-term outcomes. Although the mammalian kidney is endowed with an amazing capacity to recover from AKI, little progress has been made in recent decades to facilitate recovery from AKI. To elucidate the early repair mechanisms after AKI, we employed the zebrafish pronephros injury model. Since damaged cells release large amounts of ATP and ATP-degradation products to signal apoptosis or necrosis to neighboring cells, we examined how depletion of purinergic and adenosine receptors impacts the directed cell migration that ensues immediately after a laser-induced tubular injury. We found that depletion of the zebrafish adenosine receptors adora1a, adora1b, adora2aa, and adora2ab significantly affected the repair process. Similar results were obtained after depletion of the purinergic p2ry2 receptor, which is highly expressed during zebrafish pronephros development. Released ATP is finally metabolized to inosine by adenosine deaminase. Depletion of zebrafish adenosine deaminases ada and ada2b interfered with the repair process; furthermore, combinations of ada and ada2b, or ada2a and ada2b displayed synergistic effects at low concentrations, supporting the involvement of inosine signaling in the repair process after a tubular injury. Our findings suggest that nucleotide-dependent signaling controls immediate migratory responses after tubular injury.
Collapse
Affiliation(s)
- Sabrina Gessler
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; (S.G.); (C.G.); (V.S.); (M.L.); (G.W.)
| | - Clara Guthmann
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; (S.G.); (C.G.); (V.S.); (M.L.); (G.W.)
| | - Vera Schuler
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; (S.G.); (C.G.); (V.S.); (M.L.); (G.W.)
| | - Miriam Lilienkamp
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; (S.G.); (C.G.); (V.S.); (M.L.); (G.W.)
| | - Gerd Walz
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; (S.G.); (C.G.); (V.S.); (M.L.); (G.W.)
- Signaling Research Centres BIOSS and CIBSS, University of Freiburg, Albertstrasse 19, 79104 Freiburg, Germany
| | - Toma Antonov Yakulov
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; (S.G.); (C.G.); (V.S.); (M.L.); (G.W.)
- Correspondence:
| |
Collapse
|
7
|
Indrischek H, Hammer J, Machate A, Hecker N, Kirilenko B, Roscito J, Hans S, Norden C, Brand M, Hiller M. Vision-related convergent gene losses reveal SERPINE3's unknown role in the eye. eLife 2022; 11:77999. [PMID: 35727138 PMCID: PMC9355568 DOI: 10.7554/elife.77999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Despite decades of research, knowledge about the genes that are important for development and function of the mammalian eye and are involved in human eye disorders remains incomplete. During mammalian evolution, mammals that naturally exhibit poor vision or regressive eye phenotypes have independently lost many eye-related genes. This provides an opportunity to predict novel eye-related genes based on specific evolutionary gene loss signatures. Building on these observations, we performed a genome-wide screen across 49 mammals for functionally uncharacterized genes that are preferentially lost in species exhibiting lower visual acuity values. The screen uncovered several genes, including SERPINE3, a putative serine proteinase inhibitor. A detailed investigation of 381 additional mammals revealed that SERPINE3 is independently lost in 18 lineages that typically do not primarily rely on vision, predicting a vision-related function for this gene. To test this, we show that SERPINE3 has the highest expression in eyes of zebrafish and mouse. In the zebrafish retina, serpine3 is expressed in Müller glia cells, a cell type essential for survival and maintenance of the retina. A CRISPR-mediated knockout of serpine3 in zebrafish resulted in alterations in eye shape and defects in retinal layering. Furthermore, two human polymorphisms that are in linkage with SERPINE3 are associated with eye-related traits. Together, these results suggest that SERPINE3 has a role in vertebrate eyes. More generally, by integrating comparative genomics with experiments in model organisms, we show that screens for specific phenotype-associated gene signatures can predict functions of uncharacterized genes.
Collapse
Affiliation(s)
- Henrike Indrischek
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Juliane Hammer
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Anja Machate
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Nikolai Hecker
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Juliana Roscito
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | | |
Collapse
|
8
|
Priyanka PP, Yenugu S. Coiled-Coil Domain-Containing (CCDC) Proteins: Functional Roles in General and Male Reproductive Physiology. Reprod Sci 2021; 28:2725-2734. [PMID: 33942254 DOI: 10.1007/s43032-021-00595-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/22/2021] [Indexed: 01/10/2023]
Abstract
The coiled-coil domain-containing (CCDC) proteins have been implicated in a variety of physiological and pathological processes. Their functional roles vary from their interaction with molecular components of signaling pathways to determining the physiological functions at the cellular and organ level. Thus, they govern important functions like gametogenesis, embryonic development, hematopoiesis, angiogenesis, and ciliary development. Further, they are implicated in the pathogenesis of a large number of cancers. Polymorphisms in CCDC genes are associated with the risk of lifetime diseases. Because of their role in many biological processes, they have been extensively studied. This review concisely presents the functional role of CCDC proteins that have been studied in the last decade. Studies on CCDC proteins continue to be an active area of investigation because of their indispensable functions. However, there is ample opportunity to further understand the involvement of CCDC proteins in many more functions. It is anticipated that basing on the available literature, the functional role of CCDC proteins will be explored much further.
Collapse
Affiliation(s)
| | - Suresh Yenugu
- Department of Animal Biology, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
9
|
Kjærner‐Semb E, Edvardsen RB, Ayllon F, Vogelsang P, Furmanek T, Rubin CJ, Veselov AE, Nilsen TO, McCormick SD, Primmer CR, Wargelius A. Comparison of anadromous and landlocked Atlantic salmon genomes reveals signatures of parallel and relaxed selection across the Northern Hemisphere. Evol Appl 2021; 14:446-461. [PMID: 33664787 PMCID: PMC7896726 DOI: 10.1111/eva.13129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
Most Atlantic salmon (Salmo salar L.) populations follow an anadromous life cycle, spending early life in freshwater, migrating to the sea for feeding, and returning to rivers to spawn. At the end of the last ice age ~10,000 years ago, several populations of Atlantic salmon became landlocked. Comparing their genomes to their anadromous counterparts can help identify genetic variation related to either freshwater residency or anadromy. The objective of this study was to identify consistently divergent loci between anadromous and landlocked Atlantic salmon strains throughout their geographical distribution, with the long-term aim of identifying traits relevant for salmon aquaculture, including fresh and seawater growth, omega-3 metabolism, smoltification, and disease resistance. We used a Pool-seq approach (n = 10-40 individuals per population) to sequence the genomes of twelve anadromous and six landlocked Atlantic salmon populations covering a large part of the Northern Hemisphere and conducted a genomewide association study to identify genomic regions having been under different selection pressure in landlocked and anadromous strains. A total of 28 genomic regions were identified and included cadm1 on Chr 13 and ppargc1a on Chr 18. Seven of the regions additionally displayed consistently reduced heterozygosity in fish obtained from landlocked populations, including the genes gpr132, cdca4, and sertad2 on Chr 15. We also found 16 regions, including igf1 on Chr 17, which consistently display reduced heterozygosity in the anadromous populations compared to the freshwater populations, indicating relaxed selection on traits associated with anadromy in landlocked salmon. In conclusion, we have identified 37 regions which may harbor genetic variation relevant for improving fish welfare and quality in the salmon farming industry and for understanding life-history traits in fish.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alexey E. Veselov
- Institute of Biology of the Karelian Research CentrePetrozavodskRussia
| | - Tom Ole Nilsen
- Department of Biological SciencesUniversity of BergenBergenNorway
| | - Stephen D. McCormick
- Conte Anadromous Fish Research LaboratoryU.S. Geological Survey, Leetown Science CenterTurners FallsMAUSA
| | - Craig R. Primmer
- Organismal and Evolutionary Biology Research ProgramFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | | |
Collapse
|
10
|
Tsai CY, Chen CT, Lin CH, Liao CC, Hua K, Hsu CH, Chen CF. Proteomic analysis of Exosomes derived from the Aqueous Humor of Myopia Patients. Int J Med Sci 2021; 18:2023-2029. [PMID: 33850473 PMCID: PMC8040407 DOI: 10.7150/ijms.51735] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Objectives: Myopia is the most common refractive vision disorder. In recent years, several studies have suggested that the alteration of the exosomal protein levels in the aqueous humor (AH) is associated with the development of several eye diseases. Therefore, we aimed to explore the exosomal protein profile of the AH from myopia patients. Methods: Exosomes were isolated from the AH. The quality, concentration, and size distribution of exosomes for each patient were measured using nanoparticle tracking analysis system. Then, the exosomal proteins were purified and digested by trypsin for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Results: There was no significant difference observed between the myopia and control when comparing the concentration and size distribution of exosomes in the AH for each sample. Based on LC-MS/MS analysis, myopia patients had higher and more complex exosomal peptide content. We found two proteins that were common in AH exosomes and eight proteins that were highly expressed in the myopia group. Conclusions: Our results provide pioneering findings for the exploration of the exosomal protein profile in myopia development. Further studies may provide significant information for the diagnosis, clinical treatment, and prognosis of myopia.
Collapse
Affiliation(s)
- Ching-Yao Tsai
- Department of Ophthalmology, Taipei City Hospital, Taipei, Taiwan.,MS Program in Transdisciplinary Long Term Care, Fu Jen Catholic University, New Taipei City, Taiwan.,Community Medicine Research Center and Institution of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chueh-Tan Chen
- Department of Ophthalmology, Taipei City Hospital, Taipei, Taiwan.,Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chin-Hui Lin
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chen-Chung Liao
- Metabolomics-Proteomics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kate Hua
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Hua Hsu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Chinese Medicine, Taipei City Hospital, Linsen, Chinese Medicine, and Kunming Branch, Taipei, Taiwan
| | - Chian-Feng Chen
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|