1
|
Blanchard AT. Can a bulky glycocalyx promote catch bonding in early integrin adhesion? Perhaps a bit. Biomech Model Mechanobiol 2024; 23:117-128. [PMID: 37704890 DOI: 10.1007/s10237-023-01762-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/30/2023] [Indexed: 09/15/2023]
Abstract
Many types of cancer cells overexpress bulky glycoproteins to form a thick glycocalyx layer. The glycocalyx physically separates the cell from its surroundings, but recent work has shown that the glycocalyx can paradoxically increase adhesion to soft tissues and therefore promote the metastasis of cancer cells. This surprising phenomenon occurs because the glycocalyx forces adhesion molecules (called integrins) on the cell's surface into clusters. These integrin clusters have cooperative effects that allow them to form stronger adhesions to surrounding tissues than would be possible with equivalent numbers of un-clustered integrins. These cooperative mechanisms have been intensely scrutinized in recent years. A more nuanced understanding of the biophysical underpinnings of glycocalyx-mediated adhesion could uncover therapeutic targets, deepen our general understanding of cancer metastasis, and elucidate general biophysical processes that extend far beyond the realm of cancer research. This work examines the hypothesis that the glycocalyx has the additional effect of increasing mechanical tension experienced by clustered integrins. Integrins function as mechanosensors that undergo catch bonding-meaning the application of moderate tension increases integrin bond lifetime relative to the lifetime of integrins experiencing low tension. In this work, a three-state chemomechanical catch bond model of integrin tension is used to investigate catch bonding in the presence of a bulky glycocalyx. A pseudo-steady-state approximation is applied, which relies on the assumption that integrin bond dynamics occur on a much faster timescale than the evolution of the full adhesion between the plasma membrane and the substrate. Force-dependent kinetic rate constants are used to calculate a steady-state distribution of integrin-ligand bonds for Gaussian-shaped adhesion geometries. The relationship between the energy of the system and adhesion geometry is then analyzed in the presence and absence of catch bonding in order to evaluate the extent to which catch bonding alters the energetics of adhesion formation. This modeling suggests that a bulky glycocalyx can lightly trigger catch bonding, increasing the bond lifetime of integrins at adhesion edges by up to 100%. The total number of integrin-ligand bonds within an adhesion is predicted to increase by up to ~ 60% for certain adhesion geometries. Catch bonding is predicted to decrease the activation energy of adhesion formation by ~ 1-4 kBT, which translates to a ~ 3-50 × increase in the kinetic rate of adhesion nucleation. This work reveals that integrin mechanics and clustering likely both contribute to glycocalyx-mediated metastasis.
Collapse
Affiliation(s)
- Aaron T Blanchard
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
- Duke Cancer Institute, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
2
|
Blanchard A. Can a bulky glycocalyx promote catch bonding in early integrin adhesion? Perhaps a bit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532909. [PMID: 36993661 PMCID: PMC10055170 DOI: 10.1101/2023.03.16.532909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Many types of cancer overexpress bulky glycoproteins to form a thick glycocalyx layer. The glycocalyx physically separates the cell from its surroundings, but recent work has shown that the glycocalyx can paradoxically increase adhesion to soft tissues and therefore promote the metastasis of cancer cells. This surprising phenomenon occurs because the glycocalyx forces adhesion molecules (called integrins) on the cell's surface into clusters. These integrin clusters have cooperative effects that allow them to form stronger adhesions to surrounding tissues than would be possible with equivalent numbers of un-clustered integrins. These cooperative mechanisms have been intensely scrutinized in recent years; a more nuanced understanding of the biophysical underpinnings of glycocalyx-mediated adhesion could uncover therapeutic targets, deepen our general understanding of cancer metastasis, and elucidate general biophysical processes that extend far beyond the realm of cancer research. This work examines the hypothesis that the glycocalyx has the additional effect of increasing mechanical tension experienced by clustered integrins. Integrins function as mechanosensors that undergo catch bonding - meaning the application of moderate tension increases integrin bond lifetime relative to the lifetime of integrins experiencing low tension. In this work, a three-state chemomechanical catch bond model of integrin tension is used to investigate catch bonding in the presence of a bulky glycocalyx. This modeling suggests that a bulky glycocalyx can lightly trigger catch bonding, increasing the bond lifetime of integrins at adhesion edges by up to 100%. The total number of integrin-ligand bonds within an adhesion is predicted to increase by up to ~60% for certain adhesion geometries. Catch bonding is predicted to decrease the activation energy of adhesion formation by ~1-4 k B T, which translates to a ~3-50× increase in the kinetic rate of adhesion nucleation. This work reveals that integrin mechanic and clustering likely both contribute to glycocalyx-mediated metastasis.
Collapse
Affiliation(s)
- Aaron Blanchard
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708 United States
- Duke Cancer Institute, Duke University, Durham, NC, 27708, United States
| |
Collapse
|
3
|
Palumbo S, Benvenuti E, Fraldi M. Actomyosin contractility and buckling of microtubules in nucleation, growth and disassembling of focal adhesions. Biomech Model Mechanobiol 2022; 21:1187-1200. [PMID: 35614374 PMCID: PMC9283365 DOI: 10.1007/s10237-022-01584-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/08/2022] [Indexed: 11/24/2022]
Abstract
Building up and maintenance of cytoskeletal structure in living cells are force-dependent processes involving a dynamic chain of polymerization and depolymerization events, which are also at the basis of cells’ remodelling and locomotion. All these phenomena develop by establishing cell–matrix interfaces made of protein complexes, known as focal adhesions, which govern mechanosensing and mechanotransduction mechanisms mediated by stress transmission between cell interior and external environment. Within this framework, by starting from a work by Cao et al. (Biophys J 109:1807–1817, 2015), we here investigate the role played by actomyosin contractility of stress fibres in nucleation, growth and disassembling of focal adhesions. In particular, we propose a tensegrity model of an adherent cell incorporating nonlinear elasticity and unstable behaviours, which provides a new kinematical interpretation of cellular contractile forces and describes how stress fibres, microtubules and adhesion plaques interact mechanobiologically. The results confirm some experimental evidences and suggest how the actomyosin contraction level could be exploited by cells to actively control their adhesion, eventually triggering cytoskeleton reconfigurations and migration processes observed in both physiological conditions and diseases.
Collapse
Affiliation(s)
- S Palumbo
- Department of Structures for Engineering and Architecture, University of Napoli "Federico II", Napoli, Italy
| | - E Benvenuti
- Department of Engineering, University of Ferrara, Ferrara, Italy
| | - M Fraldi
- Department of Structures for Engineering and Architecture, University of Napoli "Federico II", Napoli, Italy.
| |
Collapse
|
4
|
Banerjee S, Nara R, Chakraborty S, Chowdhury D, Haldar S. Integrin Regulated Autoimmune Disorders: Understanding the Role of Mechanical Force in Autoimmunity. Front Cell Dev Biol 2022; 10:852878. [PMID: 35372360 PMCID: PMC8971850 DOI: 10.3389/fcell.2022.852878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
The pathophysiology of autoimmune disorders is multifactorial, where immune cell migration, adhesion, and lymphocyte activation play crucial roles in its progression. These immune processes are majorly regulated by adhesion molecules at cell–extracellular matrix (ECM) and cell–cell junctions. Integrin, a transmembrane focal adhesion protein, plays an indispensable role in these immune cell mechanisms. Notably, integrin is regulated by mechanical force and exhibit bidirectional force transmission from both the ECM and cytosol, regulating the immune processes. Recently, integrin mechanosensitivity has been reported in different immune cell processes; however, the underlying mechanics of these integrin-mediated mechanical processes in autoimmunity still remains elusive. In this review, we have discussed how integrin-mediated mechanotransduction could be a linchpin factor in the causation and progression of autoimmune disorders. We have provided an insight into how tissue stiffness exhibits a positive correlation with the autoimmune diseases’ prevalence. This provides a plausible connection between mechanical load and autoimmunity. Overall, gaining insight into the role of mechanical force in diverse immune cell processes and their dysregulation during autoimmune disorders will open a new horizon to understand this physiological anomaly.
Collapse
|
5
|
Wang S, Lin S, Xue B, Wang C, Yan N, Guan Y, Hu Y, Wen X. Bruch's-Mimetic Nanofibrous Membranes Functionalized with the Integrin-Binding Peptides as a Promising Approach for Human Retinal Pigment Epithelium Cell Transplantation. Molecules 2022; 27:1429. [PMID: 35209218 PMCID: PMC8874486 DOI: 10.3390/molecules27041429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/02/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND This study aimed to develop an ultrathin nanofibrous membrane able to, firstly, mimic the natural fibrous architecture of human Bruch's membrane (BM) and, secondly, promote survival of retinal pigment epithelial (RPE) cells after surface functionalization of fibrous membranes. METHODS Integrin-binding peptides (IBPs) that specifically interact with appropriate adhesion receptors on RPEs were immobilized on Bruch's-mimetic membranes to promote coverage of RPEs. Surface morphologies, Fourier-transform infrared spectroscopy spectra, contact angle analysis, Alamar Blue assay, live/dead assay, immunofluorescence staining, and scanning electron microscopy were used to evaluate the outcome. RESULTS Results showed that coated membranes maintained the original morphology of nanofibers. After coating with IBPs, the water contact angle of the membrane surfaces varied from 92.38 ± 0.67 degrees to 20.16 ± 0.81 degrees. RPE cells seeded on IBP-coated membranes showed the highest viability at all time points (Day 1, p < 0.05; Day 3, p < 0.01; Days 7 and 14, p < 0.001). The proliferation rate of RPE cells on uncoated poly(ε-caprolactone) (PCL) membranes was significantly lower than that of IBP-coated membranes (p < 0.001). SEM images showed a well-organized hexa/polygonal monolayer of RPE cells on IBP-coated membranes. RPE cells proliferated rapidly, contacted, and became confluent. RPE cells formed a tight adhesion with nanofibers under high-magnification SEM. Our findings confirmed that the IBP-coated PCL membrane improved the attachment, proliferation, and viability of RPE cells. In addition, in this study, we used serum-free culture for RPE cells and short IBPs without immunogenicity to prevent graft rejection and immunogenicity during transplantation. CONCLUSIONS These results indicated that the biomimic BM-IBP-RPE nanofibrous graft might be a new, practicable approach to increase the success rate of RPE cell transplantation.
Collapse
Affiliation(s)
- Shaocheng Wang
- Endocrine Department, Third Central Hospital of Tianjin, Tianjin 300170, China; (S.W.); (N.Y.); (Y.G.)
- Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.L.); (B.X.); (C.W.)
| | - Siyong Lin
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.L.); (B.X.); (C.W.)
- Department of Ophthalmology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Bo Xue
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.L.); (B.X.); (C.W.)
| | - Chenyu Wang
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.L.); (B.X.); (C.W.)
| | - Nana Yan
- Endocrine Department, Third Central Hospital of Tianjin, Tianjin 300170, China; (S.W.); (N.Y.); (Y.G.)
- Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
| | - Yueyan Guan
- Endocrine Department, Third Central Hospital of Tianjin, Tianjin 300170, China; (S.W.); (N.Y.); (Y.G.)
- Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
| | - Yuntao Hu
- Department of Ophthalmology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Xuejun Wen
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.L.); (B.X.); (C.W.)
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai 200065, China
- International Institute for Biomedical Biomaterials (IBM), Zhengzhou 450018, China
| |
Collapse
|
6
|
Rens EG, Edelstein-Keshet L. Cellular Tango: how extracellular matrix adhesion choreographs Rac-Rho signaling and cell movement. Phys Biol 2021; 18. [PMID: 34544056 DOI: 10.1088/1478-3975/ac2888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022]
Abstract
The small GTPases Rac and Rho are known to regulate eukaryotic cell shape, promoting front protrusion (Rac) or rear retraction (Rho) of the cell edge. Such cell deformation changes the contact and adhesion of cell to the extracellular matrix (ECM), while ECM signaling through integrin receptors also affects GTPase activity. We develop and investigate a model for this three-way feedback loop in 1D and 2D spatial domains, as well as in a fully deforming 2D cell shapes with detailed adhesion-bond biophysics. The model consists of reaction-diffusion equations solved numerically with open-source software, Morpheus, and with custom-built cellular Potts model simulations. We find a variety of patterns and cell behaviors, including persistent polarity, flipped front-back cell polarity oscillations, spiral waves, and random protrusion-retraction. We show that the observed spatial patterns depend on the cell shape, and vice versa.
Collapse
Affiliation(s)
- Elisabeth G Rens
- Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands.,Department of Mathematics, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
7
|
Mishra YG, Manavathi B. Focal adhesion dynamics in cellular function and disease. Cell Signal 2021; 85:110046. [PMID: 34004332 DOI: 10.1016/j.cellsig.2021.110046] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Acting as a bridge between the cytoskeleton of the cell and the extra cellular matrix (ECM), the cell-ECM adhesions with integrins at their core, play a major role in cell signalling to direct mechanotransduction, cell migration, cell cycle progression, proliferation, differentiation, growth and repair. Biochemically, these adhesions are composed of diverse, yet an organised group of structural proteins, receptors, adaptors, various enzymes including protein kinases, phosphatases, GTPases, proteases, etc. as well as scaffolding molecules. The major integrin adhesion complexes (IACs) characterised are focal adhesions (FAs), invadosomes (podosomes and invadopodia), hemidesmosomes (HDs) and reticular adhesions (RAs). The varied composition and regulation of the IACs and their signalling, apart from being an integral part of normal cell survival, has been shown to be of paramount importance in various developmental and pathological processes. This review per-illustrates the recent advancements in the research of IACs, their crucial roles in normal as well as diseased states. We have also touched on few of the various methods that have been developed over the years to visualise IACs, measure the forces they exert and study their signalling and molecular composition. Having such pertinent roles in the context of various pathologies, these IACs need to be understood and studied to develop therapeutical targets. We have given an update to the studies done in recent years and described various techniques which have been applied to study these structures, thereby, providing context in furthering research with respect to IAC targeted therapeutics.
Collapse
Affiliation(s)
- Yasaswi Gayatri Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
8
|
Sani S, Messe M, Fuchs Q, Pierrevelcin M, Laquerriere P, Entz-Werle N, Reita D, Etienne-Selloum N, Bruban V, Choulier L, Martin S, Dontenwill M. Biological Relevance of RGD-Integrin Subtype-Specific Ligands in Cancer. Chembiochem 2020; 22:1151-1160. [PMID: 33140906 DOI: 10.1002/cbic.202000626] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Integrins are heterodimeric transmembrane proteins able to connect cells with the micro-environment. They represent a family of receptors involved in almost all the hallmarks of cancer. Integrins recognizing the Arg-Gly-Asp (RGD) peptide in their natural extracellular matrix ligands have been particularly investigated as tumoral therapeutic targets. In the last 30 years, intense research has been dedicated to designing specific RGD-like ligands able to discriminate selectively the different RGD-recognizing integrins. Chemists' efforts have led to the proposition of modified peptide or peptidomimetic libraries to be used for tumor targeting and/or tumor imaging. Here we review, from the biological point of view, the rationale underlying the need to clearly delineate each RGD-integrin subtype by selective tools. We describe the complex roles of RGD-integrins (mainly the most studied αvβ3 and α5β1 integrins) in tumors, the steps towards selective ligands and the current usefulness of such ligands. Although the impact of integrins in cancer is well acknowledged, the biological characteristics of each integrin subtype in a specific tumor are far from being completely resolved. Selective ligands might help us to reconsider integrins as therapeutic targets in specific clinical settings.
Collapse
Affiliation(s)
- Saidu Sani
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
- Cancer and Diabetic Research Group, Department of Biochemistry and Molecular Biology, Faculty of Science, Federal University Ndufu-Alike Ikwo, P.M.B, 1010, Abakaliki, Ebonyi State, Nigeria
| | - Mélissa Messe
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
- Institut Pluridisciplinaire Hubert Curien (IPHC), UMR CNRS 7178, Université de Strasbourg, 67000, Strasbourg, France
| | - Quentin Fuchs
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
| | - Marina Pierrevelcin
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
| | - Patrice Laquerriere
- Institut Pluridisciplinaire Hubert Curien (IPHC), UMR CNRS 7178, Université de Strasbourg, 67000, Strasbourg, France
| | - Natacha Entz-Werle
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
- Pediatric Onco-Hematology Department, Pediatrics, University Hospital of Strasbourg, 1 avenue Molière, 67098, Strasbourg, France
| | - Damien Reita
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
- Department of Oncobiology, Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, France
| | - Nelly Etienne-Selloum
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
- Institut du Cancer Strasbourg Europe (ICANS), Service de Pharmacie, 17 rue Albert Calmette, 67200 Strasbourg, France
| | - Véronique Bruban
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
| | - Laurence Choulier
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
| | - Sophie Martin
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
| | - Monique Dontenwill
- Laboratoire de Bioimagerie et Pathologies (LBP), UMR CNRS 7021, Institut Thématique Interdisciplinaire InnoVec, Université de Strasbourg, Faculté de Pharmacie, 74 route du, Rhin, CS 60024, 67401, Illkirch Cedex, France
| |
Collapse
|
9
|
MacKay L, Lehman E, Khadra A. Deciphering the dynamics of lamellipodium in a fish keratocytes model. J Theor Biol 2020; 512:110534. [PMID: 33181178 DOI: 10.1016/j.jtbi.2020.110534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 11/15/2022]
Abstract
Motile cells depend on an intricate network of feedback loops that are essential in driving cell movement. Integrin-based focal adhesions (FAs) along with actin are the two key factors that mediate such motile behaviour. Together, they generate excitable dynamics that are essential for forming protrusions at the leading edge of the cell and, in certain cases, traveling waves along the membrane. A partial differential equation (PDE) model of a self-organizing lamellipodium in crawling keratocytes has been previously developed to understand how the three spatiotemporal patterns of activity observed in such cells, namely, stalling, waving and smooth motility, are produced. The model consisted of three key variables: the density of barbed actin filaments, newly formed FAs called nascent adhesions (NAs) and VASP, an anti-capping protein that gets sequestered by NAs during maturation. Using parameter sweeping techniques, the distinct regimes of behaviour associated with the three activity patterns were identified. In this study, we convert the PDE model into an ordinary differential equation (ODE) model to examine its excitability properties and determine all the patterns of activity exhibited by this system. Our results reveal that there are two additional regimes not previously identified, including bistability and oscillatory-like type IV excitability (generated by three steady states and their manifolds, rather than limit cycles). These regimes are also present in the PDE model. Applying slow-fast analysis on the ODE model shows that it exhibits a canard explosion through a folded-saddle and that rough motility seen in keratocytes is likely due to noise-dependent motility governed by dynamics near the interface of bistability and type IV excitability. The two parameter bifurcation suggests that the increase in the proportion of rough motion is due to a shift in activity towards the bistable and type IV excitable regimes induced by a decrease in NA maturation rate. Our results thus provide important insight into how microscopic mechanical effects are integrated to produce the observed modes of motility.
Collapse
Affiliation(s)
- Laurent MacKay
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, QC H3G 1Y6, Canada.
| | | | - Anmar Khadra
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, QC H3G 1Y6, Canada.
| |
Collapse
|