1
|
Blay V, Pandiella A. Strategies to boost antibody selectivity in oncology. Trends Pharmacol Sci 2024; 45:1135-1149. [PMID: 39609227 DOI: 10.1016/j.tips.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/03/2024] [Accepted: 10/18/2024] [Indexed: 11/30/2024]
Abstract
Antibodies in oncology are being equipped with toxic cargoes and effector functions that can kill cells at very low concentrations. A key challenge is that most targets on cancer cells are also present on at least some healthy cells. Shared targets can result in off-tumor binding and compromise the safety and potential of therapeutic candidates. In this review, we survey strategies that can help direct biologics to cancer sites more selectively. These strategies are becoming increasingly feasible thanks to advances in molecular design and engineering. The objective is to create therapeutics that exploit changes in cancer and leverage the human body infrastructure, enabling therapeutics that discriminate not just self from non-self but diseased from healthy tissue.
Collapse
Affiliation(s)
- Vincent Blay
- University of California Santa Cruz, Department of Microbiology and Environmental Toxicology, Santa Cruz, CA 95064, USA.
| | - Atanasio Pandiella
- Centro de Investigación del Cáncer, CIBERONC and IBSAL, 37007 Salamanca, Spain
| |
Collapse
|
2
|
Li Q, Zhang K, Yu Y, Yu Z, Xu J, Shen W, Zhang L, Qu A, Liang H. TFAB002s, novel CD20-targeting T cell-dependent bispecific Fab-FabCH3 antibodies, exhibit potent antitumor efficacy against malignant B-cell lymphoma. PLoS One 2024; 19:e0310889. [PMID: 39321199 PMCID: PMC11423992 DOI: 10.1371/journal.pone.0310889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024] Open
Abstract
B-cell lymphoma, clinically, comprises a heterogeneous group of malignancies that encompass various subtypes. CD20 is an optimal target for therapeutic antibodies in B-cell lymphoma immunotherapy since approximately 90% of B-cell malignancies typically exhibit CD20 expression on their surface, while its presence is limited in normal tissues. In this study, we have developed a series of novel non-IgG-like T cell-dependent bispecific antibodies by constructing Fab-FabCH3, referred to as Tandem Antigen-binding Fragment 002 (TFAB002), which specifically target CD20 for the treatment of malignant B-cell lymphoma. TFAB002s display strong binding affinity with CD20 and moderate binding affinity with CD3, thereby triggering target-specific T-cell activation, cytokine release, and tumor cell lysis in vitro. Furthermore, TFAB002s exhibit potent cytotoxicity against B-cell malignancies that express varying levels of CD20. Besides, the TFAB002s show potent pharmacodynamic activity in vivo in the WIL2-S cells CDX mouse model. Collectively, these results underscore the potential of TFAB002s as a highly promising therapeutic approach for selectively depleting CD20-positive B cells, thereby warranting further clinical evaluation as a viable treatment option for CD20-expressing B-cell malignancies.
Collapse
Affiliation(s)
- Qinghong Li
- No.1 Research Laboratory, Shanghai Institute of Biological Products Co., Ltd., Shanghai, China
| | - Kunming Zhang
- No.1 Research Laboratory, Shanghai Institute of Biological Products Co., Ltd., Shanghai, China
| | - Yao Yu
- No.1 Research Laboratory, Shanghai Institute of Biological Products Co., Ltd., Shanghai, China
| | - Zeng Yu
- No.1 Research Laboratory, Shanghai Institute of Biological Products Co., Ltd., Shanghai, China
| | - Jingyi Xu
- No.1 Research Laboratory, Shanghai Institute of Biological Products Co., Ltd., Shanghai, China
| | - Wenyan Shen
- No.1 Research Laboratory, Shanghai Institute of Biological Products Co., Ltd., Shanghai, China
| | - Lin Zhang
- No.1 Research Laboratory, Shanghai Institute of Biological Products Co., Ltd., Shanghai, China
| | - Aidong Qu
- No.1 Research Laboratory, Shanghai Institute of Biological Products Co., Ltd., Shanghai, China
| | - Hongyuan Liang
- No.1 Research Laboratory, Shanghai Institute of Biological Products Co., Ltd., Shanghai, China
| |
Collapse
|
3
|
Romei MG, Leonard B, Katz ZB, Le D, Yang Y, Day ES, Koo CW, Sharma P, Bevers Iii J, Kim I, Dai H, Farahi F, Lin M, Shaw AS, Nakamura G, Sockolosky JT, Lazar GA. i-shaped antibody engineering enables conformational tuning of biotherapeutic receptor agonists. Nat Commun 2024; 15:642. [PMID: 38245524 PMCID: PMC10799922 DOI: 10.1038/s41467-024-44985-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
The ability to leverage antibodies to agonize disease relevant biological pathways has tremendous potential for clinical investigation. Yet while antibodies have been successful as antagonists, immune mediators, and targeting agents, they are not readily effective at recapitulating the biology of natural ligands. Among the important determinants of antibody agonist activity is the geometry of target receptor engagement. Here, we describe an engineering approach inspired by a naturally occurring Fab-Fab homotypic interaction that constrains IgG in a unique i-shaped conformation. i-shaped antibody (iAb) engineering enables potent intrinsic agonism of five tumor necrosis factor receptor superfamily (TNFRSF) targets. When applied to bispecific antibodies against the heterodimeric IL-2 receptor pair, constrained bispecific IgG formats recapitulate IL-2 agonist activity. iAb engineering provides a tool to tune agonist antibody function and this work provides a framework for the development of intrinsic antibody agonists with the potential for generalization across broad receptor classes.
Collapse
Affiliation(s)
- Matthew G Romei
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Brandon Leonard
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Zachary B Katz
- Department of Research Biology, Genentech Inc., South San Francisco, CA, USA
| | - Daniel Le
- Department of Microchemistry, Proteomic, Lipidomics, and Next Generation Sequencing, Genentech Inc., South San Francisco, CA, USA
| | - Yanli Yang
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Eric S Day
- Department of Pharma Technical Development, Genentech Inc., South San Francisco, CA, USA
| | - Christopher W Koo
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Preeti Sharma
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Jack Bevers Iii
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Ingrid Kim
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Huiguang Dai
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Farzam Farahi
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - May Lin
- Department of Protein Chemistry, Genentech Inc., South San Francisco, CA, USA
| | - Andrey S Shaw
- Department of Research Biology, Genentech Inc., South San Francisco, CA, USA
| | - Gerald Nakamura
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | | | - Greg A Lazar
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
4
|
Chen J, Pan Z, Han L, Liu J, Yue Y, Xiao X, Zhang B, Wu M, Yuan Y, Bian Y, Jiang H, Xie Y, Zhu J. Binding domain on CD22 molecules contributing to the biological activity of T cell-engaging bispecific antibodies. Heliyon 2023; 9:e17960. [PMID: 37456045 PMCID: PMC10344817 DOI: 10.1016/j.heliyon.2023.e17960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Abstract
CD22, as the B-cell malignancies antigen, has been targeted for immunotherapies through CAR-T cells, antibody-drug conjugates (ADCs) and immunotoxins via interaction of antibodies with binding domains on the receptor. We hypothesized that avidity and binding domain of antibody to target cells may have significant impact on the biological function in tumor immunotherapy, and T cell-engaging bispecific antibody (TCB) targeting CD22 could be used in the therapy of hematologic malignancies. So, to address the question, we utilized the information of six previously reported CD22 mAbs to generate CD22-TCBs with different avidity to different domains on CD22 protein. We found that the avidity of CD22-TCBs to protein was not consistent with the avidity to target cells, indicating that TCBs had different binding mode to the protein and cells. In vitro results indicated that CD22-TCBs mediated cytotoxicity depended on the avidity of antibodies to target cells rather than to protein. Moreover, distal binding domain of the antigen contributed to the avidity and biological activity of IgG-[L]-scfv-like CD22-TCBs. The T cells' proliferation, activation, cytotoxicity as well as cytokine release were compared, and G5/44 BsAb was selected for further in vivo assessment in anti-tumor activity. In vivo results demonstrated that CD22-TCB (G5/44 BsAb) significantly inhibited the tumors growth in mice. All these data suggested that CD22-TCBs could be developed as a promising candidate for B-cell malignancies therapy through optimizing the design with avidity and binding domain to CD22 target in consideration.
Collapse
Affiliation(s)
- Jie Chen
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhidi Pan
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Han
- Jecho Institute, Shanghai 200240, China
| | - Junjun Liu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yali Yue
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | - Baohong Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingyuan Wu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yunsheng Yuan
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanlin Bian
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hua Jiang
- Jecho Biopharmaceuticals Co., Ltd, Tianjin, 300450, China
- Jecho Laboratories, Inc., Frederick, MD21704, USA
| | - Yueqing Xie
- Jecho Laboratories, Inc., Frederick, MD21704, USA
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
5
|
Zarzar J, Khan T, Bhagawati M, Weiche B, Sydow-Andersen J, Alavattam S. High concentration formulation developability approaches and considerations. MAbs 2023; 15:2211185. [PMID: 37191233 DOI: 10.1080/19420862.2023.2211185] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The growing need for biologics to be administered subcutaneously and ocularly, coupled with certain indications requiring high doses, has resulted in an increase in drug substance (DS) and drug product (DP) protein concentrations. With this increase, more emphasis must be placed on identifying critical physico-chemical liabilities during drug development, including protein aggregation, precipitation, opalescence, particle formation, and high viscosity. Depending on the molecule, liabilities, and administration route, different formulation strategies can be used to overcome these challenges. However, due to the high material requirements, identifying optimal conditions can be slow, costly, and often prevent therapeutics from moving rapidly into the clinic/market. In order to accelerate and derisk development, new experimental and in-silico methods have emerged that can predict high concentration liabilities. Here, we review the challenges in developing high concentration formulations, the advances that have been made in establishing low mass and high-throughput predictive analytics, and advances in in-silico tools and algorithms aimed at identifying risks and understanding high concentration protein behavior.
Collapse
Affiliation(s)
- Jonathan Zarzar
- Pharmaceutical Development, Genentech Inc, South San Francisco, CA, USA
| | - Tarik Khan
- Pharma Technical Development Europe, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Maniraj Bhagawati
- Large Molecule Research, Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - Benjamin Weiche
- Large Molecule Research, Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | - Jasmin Sydow-Andersen
- Large Molecule Research, Pharma Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | | |
Collapse
|
6
|
Edelmann MR. Radiolabelling small and biomolecules for tracking and monitoring. RSC Adv 2022; 12:32383-32400. [PMID: 36425706 PMCID: PMC9650631 DOI: 10.1039/d2ra06236d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Radiolabelling small molecules with beta-emitters has been intensively explored in the last decades and novel concepts for the introduction of radionuclides continue to be reported regularly. New catalysts that induce carbon/hydrogen activation are able to incorporate isotopes such as deuterium or tritium into small molecules. However, these established labelling approaches have limited applicability for nucleic acid-based drugs, therapeutic antibodies, or peptides, which are typical of the molecules now being investigated as novel therapeutic modalities. These target molecules are usually larger (significantly >1 kDa), mostly multiply charged, and often poorly soluble in organic solvents. However, in preclinical research they often require radiolabelling in order to track and monitor drug candidates in metabolism, biotransformation, or pharmacokinetic studies. Currently, the most established approach to introduce a tritium atom into an oligonucleotide is based on a multistep synthesis, which leads to a low specific activity with a high level of waste and high costs. The most common way of tritiating peptides is using appropriate precursors. The conjugation of a radiolabelled prosthetic compound to a functional group within a protein sequence is a commonly applied way to introduce a radionuclide or a fluorescent tag into large molecules. This review highlights the state-of-the-art in different radiolabelling approaches for oligonucleotides, peptides, and proteins, as well as a critical assessment of the impact of the label on the properties of the modified molecules. Furthermore, applications of radiolabelled antibodies in biodistribution studies of immune complexes and imaging of brain targets are reported.
Collapse
Affiliation(s)
- Martin R Edelmann
- Department of Pharmacy and Pharmacology, University of Bath Bath BA2 7AY UK
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Therapeutic Modalities, Small Molecule Research, Isotope Synthesis, F. Hoffmann-La Roche Ltd CH-4070 Basel Switzerland
| |
Collapse
|
7
|
Dengl S, Mayer K, Bormann F, Duerr H, Hoffmann E, Nussbaum B, Tischler M, Wagner M, Kuglstatter A, Leibrock L, Buldun C, Georges G, Brinkmann U. Format chain exchange (FORCE) for high-throughput generation of bispecific antibodies in combinatorial binder-format matrices. Nat Commun 2020; 11:4974. [PMID: 33009381 PMCID: PMC7532213 DOI: 10.1038/s41467-020-18477-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
Generation of bispecific antibodies (bsAbs) requires a combination of compatible binders in formats that support desired functionalities. Here, we report that bsAb-matrices can be generated by Format Chain Exchange (FORCE), enabling screening of combinatorial binder/format spaces. Input molecules for generation of bi/multi-valent bsAbs are monospecific entities similar to knob-into-hole half-antibodies, yet with complementary CH3-interface-modulated and affinity-tagged dummy-chains. These contain mutations that lead to limited interface repulsions without compromising expression or biophysical properties of educts. Mild reduction of combinations of educts triggers spontaneous chain-exchange reactions driven by partially flawed CH3-educt interfaces resolving to perfect complementarity. This generates large bsAb matrices harboring different binders in multiple formats. Benign biophysical properties and good expression yields of educts, combined with simplicity of purification enables process automation. Examples that demonstrate the relevance of screening binder/format combinations are provided as a matrix of bsAbs that simultaneously bind Her1/Her2 and DR5 without encountering binder or format-inflicted interferences. Bispecific antibodies have been generated in many different formats and it is becoming clear that rational design alone cannot create optimal functionalities. Here the authors introduce the high throughput methodology, Format Chain Exchange (FORCE), to enable combinatorial generation of bispecific antibodies.
Collapse
Affiliation(s)
- Stefan Dengl
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Klaus Mayer
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Felix Bormann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Harald Duerr
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Eike Hoffmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Bianca Nussbaum
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Michael Tischler
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Martina Wagner
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Andreas Kuglstatter
- Roche Pharma Research and Early Development (pRED), Structural Biology, Roche Innovation Center Basel, Basel, Switzerland
| | - Lea Leibrock
- Roche Pharma Research and Early Development (pRED), Structural Biology, Roche Innovation Center Basel, Basel, Switzerland
| | - Can Buldun
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Guy Georges
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany.
| |
Collapse
|