1
|
Zhang M, Zhou Y, Cui X, Zhu L. The Potential of Co-Evolution and Interactions of Gut Bacteria-Phages in Bamboo-Eating Pandas: Insights from Dietary Preference-Based Metagenomic Analysis. Microorganisms 2024; 12:713. [PMID: 38674657 PMCID: PMC11051890 DOI: 10.3390/microorganisms12040713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Bacteria and phages are two of the most abundant biological entities in the gut microbiome, and diet and host phylogeny are two of the most critical factors influencing the gut microbiome. A stable gut bacterial community plays a pivotal role in the host's physiological development and immune health. A phage is a virus that directly infects bacteria, and phages' close associations and interactions with bacteria are essential for maintaining the stability of the gut bacterial community and the entire microbial ecosystem. Here, we utilized 99 published metagenomic datasets from 38 mammalian species to investigate the relationship (diversity and composition) and potential interactions between gut bacterial and phage communities and the impact of diet and phylogeny on these communities. Our results highlight the co-evolutionary potential of bacterial-phage interactions within the mammalian gut. We observed a higher alpha diversity in gut bacteria than in phages and identified positive correlations between bacterial and phage compositions. Furthermore, our study revealed the significant influence of diet and phylogeny on mammalian gut bacterial and phage communities. We discovered that the impact of dietary factors on these communities was more pronounced than that of phylogenetic factors at the order level. In contrast, phylogenetic characteristics had a more substantial influence at the family level. The similar omnivorous dietary preference and closer phylogenetic relationship (family Ursidae) may contribute to the similarity of gut bacterial and phage communities between captive giant panda populations (GPCD and GPYA) and omnivorous animals (OC; including Sun bear, brown bear, and Asian black bear). This study employed co-occurrence microbial network analysis to reveal the potential interaction patterns between bacteria and phages. Compared to other mammalian groups (carnivores, herbivores, and omnivores), the gut bacterial and phage communities of bamboo-eating species (giant pandas and red pandas) exhibited a higher level of interaction. Additionally, keystone species and modular analysis showed the potential role of phages in driving and maintaining the interaction patterns between bacteria and phages in captive giant pandas. In sum, gaining a comprehensive understanding of the interaction between the gut microbiota and phages in mammals is of great significance, which is of great value in promoting healthy and sustainable mammals and may provide valuable insights into the conservation of wildlife populations, especially endangered animal species.
Collapse
Affiliation(s)
| | | | | | - Lifeng Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing 210098, China; (M.Z.); (Y.Z.); (X.C.)
| |
Collapse
|
2
|
Cook R, Brown N, Rihtman B, Michniewski S, Redgwell T, Clokie M, Stekel DJ, Chen Y, Scanlan DJ, Hobman JL, Nelson A, Jones MA, Smith D, Millard A. The long and short of it: benchmarking viromics using Illumina, Nanopore and PacBio sequencing technologies. Microb Genom 2024; 10:001198. [PMID: 38376377 PMCID: PMC10926689 DOI: 10.1099/mgen.0.001198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024] Open
Abstract
Viral metagenomics has fuelled a rapid change in our understanding of global viral diversity and ecology. Long-read sequencing and hybrid assembly approaches that combine long- and short-read technologies are now being widely implemented in bacterial genomics and metagenomics. However, the use of long-read sequencing to investigate viral communities is still in its infancy. While Nanopore and PacBio technologies have been applied to viral metagenomics, it is not known to what extent different technologies will impact the reconstruction of the viral community. Thus, we constructed a mock bacteriophage community of previously sequenced phage genomes and sequenced them using Illumina, Nanopore and PacBio sequencing technologies and tested a number of different assembly approaches. When using a single sequencing technology, Illumina assemblies were the best at recovering phage genomes. Nanopore- and PacBio-only assemblies performed poorly in comparison to Illumina in both genome recovery and error rates, which both varied with the assembler used. The best Nanopore assembly had errors that manifested as SNPs and INDELs at frequencies 41 and 157 % higher than found in Illumina only assemblies, respectively. While the best PacBio assemblies had SNPs at frequencies 12 and 78 % higher than found in Illumina-only assemblies, respectively. Despite high-read coverage, long-read-only assemblies recovered a maximum of one complete genome from any assembly, unless reads were down-sampled prior to assembly. Overall the best approach was assembly by a combination of Illumina and Nanopore reads, which reduced error rates to levels comparable with short-read-only assemblies. When using a single technology, Illumina only was the best approach. The differences in genome recovery and error rates between technology and assembler had downstream impacts on gene prediction, viral prediction, and subsequent estimates of diversity within a sample. These findings will provide a starting point for others in the choice of reads and assembly algorithms for the analysis of viromes.
Collapse
Affiliation(s)
- Ryan Cook
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Leicestershire, LE12 5RD, UK
| | - Nathan Brown
- Centre for Phage Research, Dept Genetics and Genome Biology, University of Leicester, University Road, Leicester, Leicestershire, LE1 7RH, UK
| | - Branko Rihtman
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Slawomir Michniewski
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Tamsin Redgwell
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820, Gentofte, Denmark
| | - Martha Clokie
- Centre for Phage Research, Dept Genetics and Genome Biology, University of Leicester, University Road, Leicester, Leicestershire, LE1 7RH, UK
| | - Dov J. Stekel
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Leicestershire, LE12 5RD, UK
- Department of Mathematics and Applied Mathematics, University of Johannesburg, Rossmore 2029, South Africa
| | - Yin Chen
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - David J. Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Jon L. Hobman
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Leicestershire, LE12 5RD, UK
| | - Andrew Nelson
- Faculty of Health and Life Sciences, University of Northumbria, Newcastle upon Tyne, NE1 8ST, UK
| | - Michael A. Jones
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Leicestershire, LE12 5RD, UK
| | - Darren Smith
- Faculty of Health and Life Sciences, University of Northumbria, Newcastle upon Tyne, NE1 8ST, UK
| | - Andrew Millard
- Centre for Phage Research, Dept Genetics and Genome Biology, University of Leicester, University Road, Leicester, Leicestershire, LE1 7RH, UK
| |
Collapse
|
3
|
Muscatt G, Cook R, Millard A, Bending GD, Jameson E. Viral metagenomics reveals diverse virus-host interactions throughout the soil depth profile. mBio 2023; 14:e0224623. [PMID: 38032184 PMCID: PMC10746233 DOI: 10.1128/mbio.02246-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Soil viruses can moderate the roles that their host microbes play in global carbon cycling. However, given that most studies investigate the surface layer (i.e., top 20 cm) of soil, the extent to which this occurs in subsurface soil (i.e., below 20 cm) is unknown. Here, we leveraged public sequencing data to investigate the interactions between viruses and their hosts at soil depth intervals, down to 115 cm. While most viruses were detected throughout the soil depth profile, their adaptation to host microbes varied. Nonetheless, we uncovered evidence for the potential of soil viruses to encourage their hosts to recycle plant-derived carbon in both surface and subsurface soils. This work reasons that our understanding of soil viral functions requires us to continue to dig deeper and compare viruses existing throughout soil ecosystems.
Collapse
Affiliation(s)
- George Muscatt
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Ryan Cook
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Andrew Millard
- Department of Genetics and Genome Biology, Leicester Centre for Phage Research, University of Leicester, Leicester, United Kingdom
| | - Gary D. Bending
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Eleanor Jameson
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| |
Collapse
|
4
|
Tang L, Yan L, Jia H, Xiong Y, Ma X, Chu H, Sun Z, Wang L, Shalitanati M, Li K, Hu D, Zhang D. Gut microbial community structure and function of Przewalski's horses varied across reintroduced sites in China. Integr Zool 2023; 18:1027-1040. [PMID: 36606497 DOI: 10.1111/1749-4877.12699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Host-associated microbiota can significantly impact host fitness. Therefore, naturally occurring variations in microbiota may influence the health and persistence of their hosts. This finding is particularly important in reintroduced animals, as they typically experience habitat changes during translocations. However, little is known about how microbiomes are altered in response to conservation translocation. Here, we accessed the gut microbiome of Przewalski's horse (Equus przewalskii) populations in China from three nature reserves (i.e. Xinjiang Kalamaili Nature Reserve, KNR; Dunhuang Xihu National Nature Reserve, DXNNR; and Anxi Extreme-arid Desert Nature Reserve, AENR) using 16s rRNA gene and metagenome sequencing. The results showed that the microbial composition and function differed significantly across locations, while a subset of core taxa was consistently present in most of the samples. The abundance of genes encoding microbe-produced enzymes involved in the metabolism of carbohydrates, especially for glycoside hydrolases, was significantly higher in open-spaced KNR populations than in more confined AENR individuals. This study offers detailed and significant differential characters related to the microbial community and metabolic pathways in various reintroduced sites of Przewalski's horse, which might provide a basis for future microecological and conservation research on endangered reintroduced animals.
Collapse
Affiliation(s)
- Liping Tang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Liping Yan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Huiping Jia
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yu Xiong
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xinping Ma
- Xinjiang Mountain Ungulate Nature Reserve Management Center, Urumqi, China
| | - Hongjun Chu
- Institute of Forestry Ecology, Xinjiang Academy of Forestry Sciences, Urumqi, China
| | - Zhicheng Sun
- Administrative Bureau of Dunhuang Xihu National Nature Reserve, Dunhuang, China
| | - Liang Wang
- Administration of Gansu Anxi Extra-arid Desert National Nature Reserve, Guazhou, China
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mubalake Shalitanati
- Xinjiang Uygur Autonomous Region Wild Horse Breeding Research Center, Urumqi, China
| | - Kai Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Defu Hu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Dong Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
5
|
Muscatt G, Hilton S, Raguideau S, Teakle G, Lidbury IDEA, Wellington EMH, Quince C, Millard A, Bending GD, Jameson E. Crop management shapes the diversity and activity of DNA and RNA viruses in the rhizosphere. MICROBIOME 2022; 10:181. [PMID: 36280853 PMCID: PMC9590211 DOI: 10.1186/s40168-022-01371-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/18/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND The rhizosphere is a hotspot for microbial activity and contributes to ecosystem services including plant health and biogeochemical cycling. The activity of microbial viruses, and their influence on plant-microbe interactions in the rhizosphere, remains undetermined. Given the impact of viruses on the ecology and evolution of their host communities, determining how soil viruses influence microbiome dynamics is crucial to build a holistic understanding of rhizosphere functions. RESULTS Here, we aimed to investigate the influence of crop management on the composition and activity of bulk soil, rhizosphere soil, and root viral communities. We combined viromics, metagenomics, and metatranscriptomics on soil samples collected from a 3-year crop rotation field trial of oilseed rape (Brassica napus L.). By recovering 1059 dsDNA viral populations and 16,541 ssRNA bacteriophage populations, we expanded the number of underexplored Leviviricetes genomes by > 5 times. Through detection of viral activity in metatranscriptomes, we uncovered evidence of "Kill-the-Winner" dynamics, implicating soil bacteriophages in driving bacterial community succession. Moreover, we found the activity of viruses increased with proximity to crop roots, and identified that soil viruses may influence plant-microbe interactions through the reprogramming of bacterial host metabolism. We have provided the first evidence of crop rotation-driven impacts on soil microbial communities extending to viruses. To this aim, we present the novel principal of "viral priming," which describes how the consecutive growth of the same crop species primes viral activity in the rhizosphere through local adaptation. CONCLUSIONS Overall, we reveal unprecedented spatial and temporal diversity in viral community composition and activity across root, rhizosphere soil, and bulk soil compartments. Our work demonstrates that the roles of soil viruses need greater consideration to exploit the rhizosphere microbiome for food security, food safety, and environmental sustainability. Video Abstract.
Collapse
Affiliation(s)
- George Muscatt
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Sally Hilton
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Sebastien Raguideau
- School of Life Sciences, University of Warwick, Coventry, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Graham Teakle
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Ian D E A Lidbury
- School of Life Sciences, University of Warwick, Coventry, UK
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, UK
| | | | - Christopher Quince
- School of Life Sciences, University of Warwick, Coventry, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Andrew Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.
| | - Gary D Bending
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Eleanor Jameson
- School of Life Sciences, University of Warwick, Coventry, UK.
- School of Natural Sciences, Bangor University, Bangor, UK.
| |
Collapse
|
6
|
Spasskaya N, Voronkova V, Letarov A, Ermilina Y, Nikolaeva E, Konorov E, Stolpovsky Y, Naidenko S. Features of reproduction in an isolated island population of the feral horses of the Lake Manych-Gudilo (Rostov Region, Russia). Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Gilroy R, Leng J, Ravi A, Adriaenssens EM, Oren A, Baker D, La Ragione RM, Proudman C, Pallen MJ. Metagenomic investigation of the equine faecal microbiome reveals extensive taxonomic diversity. PeerJ 2022; 10:e13084. [PMID: 35345588 PMCID: PMC8957277 DOI: 10.7717/peerj.13084] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/17/2022] [Indexed: 01/12/2023] Open
Abstract
Background The horse plays crucial roles across the globe, including in horseracing, as a working and companion animal and as a food animal. The horse hindgut microbiome makes a key contribution in turning a high fibre diet into body mass and horsepower. However, despite its importance, the horse hindgut microbiome remains largely undefined. Here, we applied culture-independent shotgun metagenomics to thoroughbred equine faecal samples to deliver novel insights into this complex microbial community. Results We performed metagenomic sequencing on five equine faecal samples to construct 123 high- or medium-quality metagenome-assembled genomes from Bacteria and Archaea. In addition, we recovered nearly 200 bacteriophage genomes. We document surprising taxonomic diversity, encompassing dozens of novel or unnamed bacterial genera and species, to which we have assigned new Candidatus names. Many of these genera are conserved across a range of mammalian gut microbiomes. Conclusions Our metagenomic analyses provide new insights into the bacterial, archaeal and bacteriophage components of the horse gut microbiome. The resulting datasets provide a key resource for future high-resolution taxonomic and functional studies on the equine gut microbiome.
Collapse
Affiliation(s)
- Rachel Gilroy
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Joy Leng
- School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Anuradha Ravi
- Quadram Institute Bioscience, Norwich, United Kingdom
| | | | - Aharon Oren
- The Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dave Baker
- Quadram Institute Bioscience, Norwich, United Kingdom
| | | | | | - Mark J. Pallen
- Quadram Institute Bioscience, Norwich, United Kingdom
- School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
- University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
8
|
Rangel-Pineros G, Millard A, Michniewski S, Scanlan D, Sirén K, Reyes A, Petersen B, Clokie MR, Sicheritz-Pontén T. From Trees to Clouds: PhageClouds for Fast Comparison of ∼640,000 Phage Genomic Sequences and Host-Centric Visualization Using Genomic Network Graphs. PHAGE (NEW ROCHELLE, N.Y.) 2021; 2:194-203. [PMID: 36147515 PMCID: PMC9041511 DOI: 10.1089/phage.2021.0008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Background: Fast and computationally efficient strategies are required to explore genomic relationships within an increasingly large and diverse phage sequence space. Here, we present PhageClouds, a novel approach using a graph database of phage genomic sequences and their intergenomic distances to explore the phage genomic sequence space. Methods: A total of 640,000 phage genomic sequences were retrieved from a variety of databases and public virome assemblies. Intergenomic distances were calculated with dashing, an alignment-free method suitable for handling massive data sets. These data were used to build a Neo4j® graph database. Results: PhageClouds supported the search of related phages among all complete phage genomes from GenBank for a single query phage in just 10 s. Moreover, PhageClouds expanded the number of closely related phage sequences detected for both finished and draft phage genomes, in comparison with searches exclusively targeting phage entries from GenBank. Conclusions: PhageClouds is a novel resource that will facilitate the analysis of phage genomic sequences and the characterization of assembled phage genomes.
Collapse
Affiliation(s)
- Guillermo Rangel-Pineros
- Section for Evolutionary Genomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogota, Colombia
| | - Andrew Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Slawomir Michniewski
- Warwick Medical School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - David Scanlan
- Warwick Medical School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Kimmo Sirén
- Section for Evolutionary Genomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alejandro Reyes
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogota, Colombia
| | - Bent Petersen
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Martha R.J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Thomas Sicheritz-Pontén
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Equine Intestinal O-Seroconverting Temperate Coliphage Hf4s: Genomic and Biological Characterization. Appl Environ Microbiol 2021; 87:e0112421. [PMID: 34406832 DOI: 10.1128/aem.01124-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Tailed bacteriophages constitute the bulk of the intestinal viromes of vertebrate animals. However, the relationships between lytic and lysogenic lifestyles of phages in these ecosystems are not always clear and may vary between the species or even between the individuals. The human intestinal (fecal) viromes are dominated mostly by temperate phages, while in horse feces virulent phages are more prevalent. To our knowledge, all the previously reported isolates of horse fecal coliphages are virulent. Temperate coliphage Hf4s was isolated from horse feces, from the indigenous equine Escherichia coli 4s strain. It is a podovirus related to the Lederbergvirus genus (including the well-characterized Salmonella bacteriophage P22). Hf4s recognizes the host O antigen as its primary receptor and possesses a functional O antigen seroconversion cluster that renders the lysogens protected from superinfection by the same bacteriophage and also abolishes the adsorption of some indigenous equine virulent coliphages, such as DT57C, while other phages, such as G7C or phiKT, retain the ability to infect E. coli 4s (Hf4s) lysogens. IMPORTANCE The relationships between virulent and temperate bacteriophages and their impact on high-density symbiotic microbial ecosystems of animals are not always clear and may vary between species or even between individuals. The horse intestinal virome is dominated by virulent phages, and Hf4s is the first temperate equine intestinal coliphage characterized. It recognizes the host O antigen as its primary receptor and possesses a functional O antigen seroconversion cluster that renders the lysogens protected from superinfection by some indigenous equine virulent coliphages, such as DT57C, while other phages, such as G7C or phiKT, retain the ability to infect E. coli 4s (Hf4s) lysogens. These findings raise questions on the significance of bacteriophage-bacteriophage interactions within the ecology of microbial viruses in mammal intestinal ecosystems.
Collapse
|