1
|
Czerw A, Deptała A, Partyka O, Pajewska M, Wiśniewska E, Sygit K, Wysocki S, Cipora E, Konieczny M, Banaś T, Małecki K, Grochans E, Grochans S, Cybulska AM, Schneider-Matyka D, Bandurska E, Ciećko W, Drobnik J, Pobrotyn P, Grata-Borkowska U, Furtak-Pobrotyn J, Sierocka A, Marczak M, Kozlowski R. Lung Cancer Screening-Trends and Current Studies. Cancers (Basel) 2024; 16:2691. [PMID: 39123419 PMCID: PMC11311529 DOI: 10.3390/cancers16152691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Lung cancer is the leading cause of death among all the oncological diseases worldwide. This applies to both women and men; however, the incidence and mortality among women is on the rise. In 2020, lung cancer was responsible for 1.8 million deaths (18%). More than 90% of lung cancer cases and 77.1% of lung cancer deaths occur in countries with high and very high HDI (human development index) values. The aim of our study is to the present trends and most recent studies aimed at lung cancer screening. In the face of the persistently high mortality rate, conducting research aimed at extending already-implemented diagnostic algorithms and behavioural interventions focused on smoking cessation is recommended.
Collapse
Affiliation(s)
- Aleksandra Czerw
- Department of Health Economics and Medical Law, Medical University of Warsaw, 01-445 Warsaw, Poland
- Department of Economic and System Analyses, National Institute of Public Health NIH-National Research Institute, 00-791 Warsaw, Poland
| | - Andrzej Deptała
- Department of Oncology Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
| | - Olga Partyka
- Department of Health Economics and Medical Law, Medical University of Warsaw, 01-445 Warsaw, Poland
- Department of Economic and System Analyses, National Institute of Public Health NIH-National Research Institute, 00-791 Warsaw, Poland
| | - Monika Pajewska
- Department of Health Economics and Medical Law, Medical University of Warsaw, 01-445 Warsaw, Poland
- Department of Economic and System Analyses, National Institute of Public Health NIH-National Research Institute, 00-791 Warsaw, Poland
| | - Ewa Wiśniewska
- Department of Health Economics and Medical Law, Medical University of Warsaw, 01-445 Warsaw, Poland
| | - Katarzyna Sygit
- Faculty of Health Sciences, Calisia University, 62-800 Kalisz, Poland
| | - Sławomir Wysocki
- Provincial Specialised Healthcare Complex for Lung Diseases and Tuberculosis in Wolica, 62-872 Wolica, Poland
| | - Elżbieta Cipora
- Medical Institute, Jan Grodek State University in Sanok, 38-500 Sanok, Poland
| | - Magdalena Konieczny
- Medical Institute, Jan Grodek State University in Sanok, 38-500 Sanok, Poland
| | - Tomasz Banaś
- Department of Radiotherapy, Maria Sklodowska-Curie Institute-Oncology Center, 31-115 Cracow, Poland
| | - Krzysztof Małecki
- Department of Radiotherapy for Children and Adults, University Children’s Hospital of Cracow, 30-663 Cracow, Poland
| | - Elżbieta Grochans
- Department of Nursing, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Szymon Grochans
- Department of Pediatric and Oncological Surgery, Urology and Hand Surgery, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Anna M. Cybulska
- Department of Nursing, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Daria Schneider-Matyka
- Department of Nursing, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Ewa Bandurska
- Center for Competence Development, Integrated Care and e-Health, Medical University of Gdansk, 80-204 Gdansk, Poland
| | - Weronika Ciećko
- Center for Competence Development, Integrated Care and e-Health, Medical University of Gdansk, 80-204 Gdansk, Poland
| | - Jarosław Drobnik
- Department of Family Medicine, Faculty of Medicine, Wroclaw Medical University, 51-141 Wroclaw, Poland
| | - Piotr Pobrotyn
- Remedial Specialistic Clinic, Pulsantis Sp. z o.o, 53-238 Wroclaw, Poland
| | - Urszula Grata-Borkowska
- Department of Family Medicine, Faculty of Medicine, Wroclaw Medical University, 51-141 Wroclaw, Poland
| | - Joanna Furtak-Pobrotyn
- Citodent Dental Center Furtak-Pobrotyn & Company Limited Partnership, 05-220 Olawa, Poland
| | - Aleksandra Sierocka
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-131 Lodz, Poland
| | - Michał Marczak
- Collegium of Management, WSB University in Warsaw, 03-204 Warsaw, Poland
| | - Remigiusz Kozlowski
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-131 Lodz, Poland
| |
Collapse
|
2
|
Lu N, Qiao Y, Lu Z, Tu J. Chimera: The spoiler in multiple displacement amplification. Comput Struct Biotechnol J 2023; 21:1688-1696. [PMID: 36879882 PMCID: PMC9984789 DOI: 10.1016/j.csbj.2023.02.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/18/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Multiple displacement amplification (MDA) based on isothermal random priming and high fidelity phi29 DNA polymerase-mediated processive extension has revolutionized the field of whole genome amplification by enabling the amplification of minute amounts of DNA, such as from a single cell, generating vast amounts of DNA with high genome coverage. Despite its advantages, MDA has its own challenges, one of the grandest being the formation of chimeric sequences (chimeras), which presents in all MDA products and seriously disturbs the downstream analysis. In this review, we provide a comprehensive overview of current research on MDA chimeras. We first reviewed the mechanisms of chimera formation and chimera detection methods. We then systematically summarized the characteristics of chimeras, including overlap, chimeric distance, chimeric density, and chimeric rate, as found in independently published sequencing data. Finally, we reviewed the methods used to process chimeric sequences and their impacts on the improvement of data utilization efficiency. The information presented in this review will be useful for those interested in understanding the challenges with MDA and in improving its performance.
Collapse
Affiliation(s)
- Na Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yi Qiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
3
|
Sharifi-Azad M, Fathi M, Cho WC, Barzegari A, Dadashi H, Dadashpour M, Jahanban-Esfahlan R. Recent advances in targeted drug delivery systems for resistant colorectal cancer. Cancer Cell Int 2022; 22:196. [PMID: 35590367 PMCID: PMC9117978 DOI: 10.1186/s12935-022-02605-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/02/2022] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the deadliest cancers in the world, the incidences and morality rate are rising and poses an important threat to the public health. It is known that multiple drug resistance (MDR) is one of the major obstacles in CRC treatment. Tumor microenvironment plus genomic instability, tumor derived exosomes (TDE), cancer stem cells (CSCs), circulating tumor cells (CTCs), cell-free DNA (cfDNA), as well as cellular signaling pathways are important issues regarding resistance. Since non-targeted therapy causes toxicity, diverse side effects, and undesired efficacy, targeted therapy with contribution of various carriers has been developed to address the mentioned shortcomings. In this paper the underlying causes of MDR and then various targeting strategies including exosomes, liposomes, hydrogels, cell-based carriers and theranostics which are utilized to overcome therapeutic resistance will be described. We also discuss implication of emerging approaches involving single cell approaches and computer-aided drug delivery with high potential for meeting CRC medical needs.
Collapse
Affiliation(s)
- Masoumeh Sharifi-Azad
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Dadashi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Status of Bioinformatics Education in South Asia: Past and Present. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5568262. [PMID: 33997009 PMCID: PMC8096557 DOI: 10.1155/2021/5568262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/10/2021] [Accepted: 03/26/2021] [Indexed: 11/18/2022]
Abstract
Bioinformatics education has been a hot topic in South Asia, and the interest in this education peaks with the start of the 21st century. The governments of South Asian countries had a systematic effort for bioinformatics. They developed the infrastructures to provide maximum facility to the scientific community to gain maximum output in this field. This article renders bioinformatics, measures, and its importance of implementation in South Asia with proper ways of improving bioinformatics education flaws. It also addresses the problems faced in South Asia and proposes some recommendations regarding bioinformatics education. The information regarding bioinformatics education and institutes was collected from different existing research papers, databases, and surveys. The information was then confirmed by visiting each institution's website, while problems and solutions displayed in the article are mostly in line with South Asian bioinformatics conferences and institutions' objectives. Among South Asian countries, India and Pakistan have developed infrastructure and education regarding bioinformatics rapidly as compared to other countries, whereas Bangladesh, Sri Lanka, and Nepal are still in a progressing phase in this field. To advance in a different sector, the bioinformatics industry has to be revolutionized, and it will contribute to strengthening the pharmaceutical, agricultural, and molecular sectors in South Asia. To advance in bioinformatics, universities' infrastructure needs to be on a par with the current international standards, which will produce well-trained professionals with skills in multiple fields like biotechnology, mathematics, statistics, and computer science. The bioinformatics industry has revolutionized and strengthened the pharmaceutical, agricultural, and molecular sectors in South Asia, and it will serve as the standard of education increases in the South Asian countries. A framework for developing a centralized database is suggested after the literature review to collect and store the information on the current status of South Asian bioinformatics education. This will be named as the South Asian Bioinformatics Education Database (SABE). This will provide comprehensive information regarding the bioinformatics in South Asian countries by the country name, the experts of this field, and the university name to explore the top-ranked outputs relevant to queries.
Collapse
|