1
|
Kumar P, Holland DA, Secrist K, Taskar P, Dotson B, Saleh-Birdjandi S, Adewunmi Y, Doering J, Mantis NJ, Volkin DB, Joshi SB. Evaluating the Compatibility of New Recombinant Protein Antigens (Trivalent NRRV) with a Mock Pentavalent Combination Vaccine Containing Whole-Cell Pertussis: Analytical and Formulation Challenges. Vaccines (Basel) 2024; 12:609. [PMID: 38932338 PMCID: PMC11209613 DOI: 10.3390/vaccines12060609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Introducing new recombinant protein antigens to existing pediatric combination vaccines is important in improving coverage and affordability, especially in low- and middle-income countries (LMICs). This case-study highlights the analytical and formulation challenges encountered with three recombinant non-replicating rotavirus vaccine (NRRV) antigens (t-NRRV formulated with Alhydrogel® adjuvant, AH) combined with a mock multidose formulation of a pediatric pentavalent vaccine used in LMICs. This complex formulation contained (1) vaccine antigens (i.e., whole-cell pertussis (wP), diphtheria (D), tetanus (T), Haemophilus influenza (Hib), and hepatitis B (HepB), (2) a mixture of aluminum-salt adjuvants (AH and Adju-Phos®, AP), and (3) a preservative (thimerosal, TH). Selective, stability-indicating competitive immunoassays were developed to monitor binding of specific mAbs to each antigen, except wP which required the setup of a mouse immunogenicity assay. Simple mixing led to the desorption of t-NRRV antigens from AH and increased degradation during storage. These deleterious effects were caused by specific antigens, AP, and TH. An AH-only pentavalent formulation mitigated t-NRRV antigen desorption; however, the Hib antigen displayed previously reported AH-induced instability. The same rank-ordering of t-NRRV antigen stability (P[8] > P[4] > P[6]) was observed in mock pentavalent formulations and with various preservatives. The lessons learned are discussed to enable future multidose, combination vaccine formulation development with new vaccine candidates.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - David A. Holland
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Kathryn Secrist
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Poorva Taskar
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Brandy Dotson
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Soraia Saleh-Birdjandi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Yetunde Adewunmi
- New York State Department of Health, Division of Infectious Diseases, Wadsworth Center, Albany, NY 12208, USA
| | - Jennifer Doering
- New York State Department of Health, Division of Infectious Diseases, Wadsworth Center, Albany, NY 12208, USA
| | - Nicholas J. Mantis
- New York State Department of Health, Division of Infectious Diseases, Wadsworth Center, Albany, NY 12208, USA
| | - David B. Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Sangeeta B. Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
2
|
Taraban MB, Ndung'u T, Karki P, Li K, Fung G, Kirkitadze M, Yu YB. Analysis of the Adsorbed Vaccine Formulations Using Water Proton Nuclear Magnetic Resonance-Comparison with Optical Analytics. Pharm Res 2023; 40:1989-1998. [PMID: 37127780 PMCID: PMC10151113 DOI: 10.1007/s11095-023-03528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
PURPOSE To evaluate wNMR, an emerging noninvasive analytical technology, for characterizing aluminum-adjuvanted vaccine formulations. METHODS wNMR stands for water proton nuclear magnetic resonance. In this work, wNMR and optical techniques (laser diffraction and laser scattering) were used to characterize vaccine formulations containing different antigen loads adsorbed onto AlPO4 adjuvant microparticles, including the fully dispersed state and the sedimentation process. All wNMR measurements were done noninvasively on sealed vials containing the adsorbed vaccine suspensions, while the optical techniques require transferring the adsorbed vaccine suspensions out of the original vial into specialized cuvette/tube for analysis. For analyzing fully dispersed suspensions, optical techniques also require sample dilution. RESULTS wNMR outperformed laser diffraction in differentiating high- and low-dose formulations of the same vaccine, while wNMR and laser scattering achieved comparable results on vaccine sedimentation kinetics and the compactness of fully settled vaccines. CONCLUSION wNMR could be used to analyze aluminum-adjuvanted formulations and to differentiate between formulations containing different antigen loads adsorbed onto aluminum adjuvant microparticles. The results demonstrate the capability of wNMR to characterize antigen-adjuvant complexes and to noninvasively inspect finished vaccine products.
Collapse
Affiliation(s)
- Marc B Taraban
- Bio‑ and Nano‑Technology Center, University of Maryland School of Pharmacy, and Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
| | - Teresia Ndung'u
- Bio‑ and Nano‑Technology Center, University of Maryland School of Pharmacy, and Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
| | - Pratima Karki
- Bio‑ and Nano‑Technology Center, University of Maryland School of Pharmacy, and Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
| | - Kira Li
- Analytical Sciences, Vaccine CMC Development and Supply, Sanofi, Toronto, ON, M2R 3T4, Canada
| | - Ginny Fung
- Analytical Sciences, Vaccine CMC Development and Supply, Sanofi, Toronto, ON, M2R 3T4, Canada
| | - Marina Kirkitadze
- Analytical Sciences, Vaccine CMC Development and Supply, Sanofi, Toronto, ON, M2R 3T4, Canada.
| | - Y Bruce Yu
- Bio‑ and Nano‑Technology Center, University of Maryland School of Pharmacy, and Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA.
| |
Collapse
|
3
|
Laera D, HogenEsch H, O'Hagan DT. Aluminum Adjuvants-'Back to the Future'. Pharmaceutics 2023; 15:1884. [PMID: 37514070 PMCID: PMC10383759 DOI: 10.3390/pharmaceutics15071884] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Aluminum-based adjuvants will continue to be a key component of currently approved and next generation vaccines, including important combination vaccines. The widespread use of aluminum adjuvants is due to their excellent safety profile, which has been established through the use of hundreds of millions of doses in humans over many years. In addition, they are inexpensive, readily available, and are well known and generally accepted by regulatory agencies. Moreover, they offer a very flexible platform, to which many vaccine components can be adsorbed, enabling the preparation of liquid formulations, which typically have a long shelf life under refrigerated conditions. Nevertheless, despite their extensive use, they are perceived as relatively 'weak' vaccine adjuvants. Hence, there have been many attempts to improve their performance, which typically involves co-delivery of immune potentiators, including Toll-like receptor (TLR) agonists. This approach has allowed for the development of improved aluminum adjuvants for inclusion in licensed vaccines against HPV, HBV, and COVID-19, with others likely to follow. This review summarizes the various aluminum salts that are used in vaccines and highlights how they are prepared. We focus on the analytical challenges that remain to allowing the creation of well-characterized formulations, particularly those involving multiple antigens. In addition, we highlight how aluminum is being used to create the next generation of improved adjuvants through the adsorption and delivery of various TLR agonists.
Collapse
Affiliation(s)
- Donatello Laera
- Technical Research & Development, Drug Product, GSK, 53100 Siena, Italy
- Global Manufacturing Division, Corporate Industrial Analytics, Chiesi Pharmaceuticals, 43122 Parma, Italy
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | | |
Collapse
|
4
|
DeJong MA, Wolf MA, Bitzer GJ, Hall JM, Sen-Kilic E, Blake JM, Petty JE, Wong TY, Barbier M, Campbell JD, Bevere JR, Damron FH. CpG 1018® adjuvant enhances Tdap immune responses against Bordetella pertussis in mice. Vaccine 2022; 40:5229-5240. [PMID: 35927132 DOI: 10.1016/j.vaccine.2022.07.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
Bordetella pertussis is the causative agent of whooping cough (pertussis), a severe respiratory disease that can be fatal, particularly in infants. Despite high vaccine coverage, pertussis remains a problem because the currently used DTaP and Tdap vaccines do not completely prevent infection or transmission. It is well established that the alum adjuvant is a potential weakness of the acellular vaccines because the immunity provided by it is short-term. We aimed to evaluate the potential of CpG 1018® adjuvant to improve antibody responses and enhance protection against B. pertussis challenge in a murine model. A titrated range of Tdap vaccine doses were evaluated in order to best identify the adjuvant capability of CpG 1018. Antibody responses to pertussis toxin (PT), filamentous hemagglutinin (FHA), or the whole bacterium were increased due to the inclusion of CpG 1018. In B. pertussis intranasal challenge studies, we observed improved protection and bacterial clearance from the lower respiratory tract due to adding CpG 1018 to 1/20th the human dose of Tdap. Further, we determined that Tdap and Tdap + CpG 1018 were both capable of facilitating clearance of strains that do not express pertactin (PRN-), which are rising in prevalence. Functional phenotyping of antibodies revealed that the inclusion of CpG 1018 induced more bacterial opsonization and antibodies of the Th1 phenotype (IgG2a and IgG2b). This study demonstrates the potential of adding CpG 1018 to Tdap to improve immunogenicity and protection against B. pertussis compared to the conventional, alum-only adjuvanted Tdap vaccine.
Collapse
Affiliation(s)
- Megan A DeJong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - M Allison Wolf
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Graham J Bitzer
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Jesse M Hall
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Jeanna M Blake
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Jonathan E Petty
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Ting Y Wong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | | | - Justin R Bevere
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA.
| |
Collapse
|
5
|
Gerzon G, Sheng Y, Kirkitadze M. Process Analytical Technologies - Advances in bioprocess integration and future perspectives. J Pharm Biomed Anal 2022; 207:114379. [PMID: 34607168 DOI: 10.1016/j.jpba.2021.114379] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022]
Abstract
Process Analytical Technology (PAT) instruments include analyzers capable of measuring physical and chemical process parameters and key attributes with the goal of optimizing process controls. PAT in the form of a probe or sensor is designed to integrate within the pharmaceutical manufacturing line and is coupled with computing equipment to perform chemometric modeling for result interpretation and multilayer statistical control of processes. PAT solutions are intended for understanding bioprocesses with a goal to control quality at all stages of product manufacturing and achieve quality by design (QbD). The goal of PAT implementation is to promote real-time release of products to decrease the cycle time and cost of production. This review focuses on the applications of PAT solutions at different stages of the manufacturing process for vaccine production, the advantages, challenges at present state, and the vision of the future development of biopharmaceutical industries.
Collapse
Affiliation(s)
- Gabriella Gerzon
- Department of Biology, Faculty of Science, York University, Toronto, Canada; Analytical Sciences, Sanofi Pasteur, Toronto, Canada
| | - Yi Sheng
- Department of Biology, Faculty of Science, York University, Toronto, Canada
| | | |
Collapse
|
6
|
Haer M, Strahlendorf K, Payne J, Jung R, Xiao E, Mirabel C, Rahman N, Kowal P, Gemmiti G, Cronin JT, Gable T, Park-Lee K, Drolet-Vives K, Balmer M, Kirkitadze M. PAT solutions to monitor adsorption of Tetanus Toxoid with aluminum adjuvants. J Pharm Biomed Anal 2021; 198:114013. [PMID: 33713883 DOI: 10.1016/j.jpba.2021.114013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/28/2022]
Abstract
The focus of this study was to examine the small-scale adsorption process of Tetanus Toxoid (TT) as a model protein antigen to aluminum phosphate (AlPO4) and aluminum oxyhydroxide (AlOOH) adjuvants with real-time monitoring by in-line ReactIR™, ParticleTrack™ based on Focused Beam Reflectance Measurement (FBRM) and EasyViewer™ probes. The adsorption process of AlPO4 and AlOOH with TT using was monitored in the small-scale reactors. Conformational changes in TT were monitored using in-line infrared probe ReactIR, whereas particle formation associated with protein adsorption were measured by particle size, count, and imaging tools, such as ParticleTrack with FBRM and EasyViewer probes. ParticleTrack distribution results and kinetic measurements were also supported by observations made using EasyViewer. In addition to EasyMax, BioBLU reactor was also used for the adsorption experiments. ReactIR with ATR-Fiber probe was effectively able to monitor adsorption progress of TT to AlOOH and to AlPO4. ReactIR, EasyViewer, and ParticleTrack provided detailed mechanistic and kinetic information for reaction of TT with AlPO4 and AlOOH. These in-situ measurements revealed a possible multi-step process for TT to AlPO4 which may be an indication of antigen adsorption.
Collapse
Affiliation(s)
- Manjit Haer
- Analytical Sciences, Sanofi Pasteur, Toronto, Canada
| | | | - Jessie Payne
- Analytical Sciences, Sanofi Pasteur, Toronto, Canada
| | - Ryan Jung
- Bioprocess Research and Development, Sanofi Pasteur, Toronto, Canada
| | - Emily Xiao
- Bioprocess Research and Development, Sanofi Pasteur, Toronto, Canada
| | | | - Nausheen Rahman
- Bioprocess Research and Development, Sanofi Pasteur, Toronto, Canada
| | - Przemek Kowal
- Analytical Sciences, Sanofi Pasteur, Toronto, Canada
| | | | | | - Tyler Gable
- Mettler Toledo AutoChem Inc., Columbia, MD, USA
| | | | | | | | | |
Collapse
|