1
|
Donati L, Valicenti ML, Giannoni S, Morena F, Martino S. Biomaterials Mimicking Mechanobiology: A Specific Design for a Specific Biological Application. Int J Mol Sci 2024; 25:10386. [PMID: 39408716 PMCID: PMC11476540 DOI: 10.3390/ijms251910386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Mechanosensing and mechanotransduction pathways between the Extracellular Matrix (ECM) and cells form the essential crosstalk that regulates cell homeostasis, tissue development, morphology, maintenance, and function. Understanding these mechanisms involves creating an appropriate cell support that elicits signals to guide cellular functions. In this context, polymers can serve as ideal molecules for producing biomaterials designed to mimic the characteristics of the ECM, thereby triggering responsive mechanisms that closely resemble those induced by a natural physiological system. The generated specific stimuli depend on the different natural or synthetic origins of the polymers, the chemical composition, the assembly structure, and the physical and surface properties of biomaterials. This review discusses the most widely used polymers and their customization to develop biomaterials with tailored properties. It examines how the characteristics of biomaterials-based polymers can be harnessed to replicate the functions of biological cells, making them suitable for biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Leonardo Donati
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Maria Luisa Valicenti
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Samuele Giannoni
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
- Centro di Eccellenza Materiali Innovativi Nanostrutturati per Applicazioni Chimiche Fisiche e Biomediche (CEMIN), University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
2
|
Rijns L, Baker MB, Dankers PYW. Using Chemistry To Recreate the Complexity of the Extracellular Matrix: Guidelines for Supramolecular Hydrogel-Cell Interactions. J Am Chem Soc 2024; 146:17539-17558. [PMID: 38888174 PMCID: PMC11229007 DOI: 10.1021/jacs.4c02980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Hydrogels have emerged as a promising class of extracellular matrix (ECM)-mimicking materials in regenerative medicine. Here, we briefly describe current state-of-the-art of ECM-mimicking hydrogels, ranging from natural to hybrid to completely synthetic versions, giving the prelude to the importance of supramolecular interactions to make true ECM mimics. The potential of supramolecular interactions to create ECM mimics for cell culture is illustrated through a focus on two different supramolecular hydrogel systems, both developed in our laboratories. We use some recent, significant findings to present important design principles underlying the cell-material interaction. To achieve cell spreading, we propose that slow molecular dynamics (monomer exchange within fibers) is crucial to ensure the robust incorporation of cell adhesion ligands within supramolecular fibers. Slow bulk dynamics (stress-relaxation─fiber rearrangements, τ1/2 ≈ 1000 s) is required to achieve cell spreading in soft gels (<1 kPa), while gel stiffness overrules dynamics in stiffer gels. Importantly, this resonates with the findings of others which specialize in different material types: cell spreading is impaired in case substrate relaxation occurs faster than clutch binding and focal adhesion lifetime. We conclude with discussing considerations and limitations of the supramolecular approach as well as provide a forward thinking perspective to further understand supramolecular hydrogel-cell interactions. Future work may utilize the presented guidelines underlying cell-material interactions to not only arrive at the next generation of ECM-mimicking hydrogels but also advance other fields, such as bioelectronics, opening up new opportunities for innovative applications.
Collapse
Affiliation(s)
- Laura Rijns
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Matthew B. Baker
- Department
of Complex Tissue Regeneration, MERLN Institute for Technology Inspired
Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology
Inspired Regenerative Medicine, Maastricht
University, 6200 MD Maastricht, The Netherlands
| | - Patricia Y. W. Dankers
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
3
|
Rehman SU, Zhen Y, Ding L, Saleh AA, Zhang Y, Zhang J, He F, Husien HM, Zhou P, Wang M. Integrative Meta-Analysis: Unveiling Genetic Factors in Meat Sheep Growth and Muscular Development through QTL and Transcriptome Studies. Animals (Basel) 2024; 14:1679. [PMID: 38891726 PMCID: PMC11171046 DOI: 10.3390/ani14111679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
OBJECTIVE The study aimed to investigate the effects of castration on performance, carcass characteristics, and meat quality in sheep, as well as explore the expression of key genes related to metabolic pathways and muscle growth following castration. METHODS A meta-analysis approach was utilized to analyze data from multiple studies to compare the performance, carcass characteristics, and meat quality of castrated sheep (wethers) with intact rams. Additionally, protein-protein interaction (PPI) networks, differential gene expression (DEG) interactions, Gene Ontology (GO) terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were examined to identify molecular mechanisms associated with fat metabolism and muscle development in sheep tails. RESULTS The analysis revealed that castrated sheep (wethers) exhibited improved average daily gain, increased tenderness, lower backfat thickness, and a tendency for greater loin muscle area compared to intact rams. This suggests that castration promotes faster growth and results in leaner carcasses with potentially higher muscle content. Furthermore, the identification of downregulated DEGs like ACLY, SLC27A2, and COL1A1 and upregulated DEGs such as HOXA9, PGM2L1, and ABAT provides insights into the molecular mechanisms underlying fat deposition and muscle development in sheep. CONCLUSIONS The findings support the practice of castration in sheep production as it enhances growth performance, leads to leaner carcasses with higher muscle content, and improves meat tenderness. The identified changes in gene expression offer valuable insights for further research into understanding the impact of castration on muscle development and fat metabolism in sheep. This meta-analysis contributes to the knowledge of molecular mechanisms involved in fat deposition in sheep, opening avenues for future investigations in livestock fat metabolism research.
Collapse
Affiliation(s)
- Shahab Ur Rehman
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.U.R.); (L.D.); (F.H.)
| | - Yongkang Zhen
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.U.R.); (L.D.); (F.H.)
| | - Luoyang Ding
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.U.R.); (L.D.); (F.H.)
| | - Ahmed A. Saleh
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
- Animal and Fish Production Department, Faculty of Agriculture (Al-Shatby), Alexandria University, Alexandria City 11865, Egypt
| | - Yifan Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.U.R.); (L.D.); (F.H.)
| | - Jinying Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.U.R.); (L.D.); (F.H.)
| | - Feiyang He
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.U.R.); (L.D.); (F.H.)
| | - Hosameldeen Mohamed Husien
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.U.R.); (L.D.); (F.H.)
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.U.R.); (L.D.); (F.H.)
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
| |
Collapse
|
4
|
Zhang X, Karagöz Z, Swapnasrita S, Habibovic P, Carlier A, van Rijt S. Development of Mesoporous Silica Nanoparticle-Based Films with Tunable Arginine-Glycine-Aspartate Peptide Global Density and Clustering Levels to Study Stem Cell Adhesion and Differentiation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38171-38184. [PMID: 37527490 PMCID: PMC10436245 DOI: 10.1021/acsami.3c04249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
Stem cell adhesion is mediated via the binding of integrin receptors to adhesion motifs present in the extracellular matrix (ECM). The spatial organization of adhesion ligands plays an important role in stem cell integrin-mediated adhesion. In this study, we developed a series of biointerfaces using arginine-glycine-aspartate (RGD)-functionalized mesoporous silica nanoparticles (MSN-RGD) to study the effect of RGD adhesion ligand global density (ligand coverage over the surface), spacing, and RGD clustering levels on stem cell adhesion and differentiation. To prepare the biointerface, MSNs were chemically functionalized with RGD peptides via an antifouling poly(ethylene glycol) (PEG) linker. The RGD surface functionalization ratio could be controlled to create MSNs with high and low RGD ligand clustering levels. MSN films with varying RGD global densities could be created by blending different ratios of MSN-RGD and non-RGD-functionalized MSNs together. A computational simulation study was performed to analyze nanoparticle distribution and RGD spacing on the resulting surfaces to determine experimental conditions. Enhanced cell adhesion and spreading were observed when RGD global density increased from 1.06 to 5.32 nmol cm-2 using highly clustered RGD-MSN-based films. Higher RGD ligand clustering levels led to larger cell spreading and increased formation of focal adhesions. Moreover, a higher RGD ligand clustering level promoted the expression of alkaline phosphatase in hMSCs. Overall, these findings indicate that both RGD global density and clustering levels are crucial variables in regulating stem cell behaviors. This study provides important information about ligand-integrin interactions, which could be implemented into biomaterial design to achieve optimal performance of adhesive functional peptides.
Collapse
Affiliation(s)
- Xingzhen Zhang
- Department of Instructive
Biomaterials Engineering MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Zeynep Karagöz
- Department of Instructive
Biomaterials Engineering MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Sangita Swapnasrita
- Department of Instructive
Biomaterials Engineering MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Pamela Habibovic
- Department of Instructive
Biomaterials Engineering MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Aurélie Carlier
- Department of Instructive
Biomaterials Engineering MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Sabine van Rijt
- Department of Instructive
Biomaterials Engineering MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
5
|
Hagelaars MJ, Rijns L, Dankers PYW, Loerakker S, Bouten CVC. Engineering Strategies to Move from Understanding to Steering Renal Tubulogenesis. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:203-216. [PMID: 36173101 DOI: 10.1089/ten.teb.2022.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rebuilding the kidney in the context of tissue engineering offers a major challenge as the organ is structurally complex and has a high variety of specific functions. Recreation of kidney function is inherently connected to the formation of tubules since the functional subunit of the kidney, the nephron, is based on tubular structures. In vivo, tubulogenesis culminates in a perfectly shaped, patterned, and functional renal tubule via different morphogenic processes that depend on delicately orchestrated chemical, physical, and mechanical interactions between cells and between cells and their microenvironment. This review summarizes the current understanding of the role of the microenvironment in the morphogenic processes involved in in vivo renal tubulogenesis. We highlight the current state-of-the-art of renal tubular engineering and provide a view on the design elements that can be extracted from these studies. Next, we discuss how computational modeling can aid in specifying and identifying design parameters and provide directions on how these design parameters can be incorporated in biomaterials for the purpose of engineering renal tubulogenesis. Finally, we propose that a step-by-step reciprocal interaction between understanding and engineering is necessary to effectively guide renal tubulogenesis. Impact statement Tubular tissue engineering lies at the foundation of regenerating kidney tissue function, as the functional subunit of the kidney, the nephron, is based on tubular structures. Guiding renal tubulogenesis toward functional renal tubules requires in-depth knowledge of the developmental processes that lead to the formation of native tubules as well as engineering approaches to steer these processes. In this study, we review the role of the microenvironment in the developmental processes that lead to functional renal tubules and give directions how this knowledge can be harnessed for biomaterial-based tubular engineering using computational models.
Collapse
Affiliation(s)
- Maria J Hagelaars
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| | - Laura Rijns
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| | - Patricia Y W Dankers
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| |
Collapse
|
6
|
Borodins O, Broghammer F, Seifert M, Cordes N. Meta-analysis of expression and the targeting of cell adhesion associated genes in nine cancer types - A one research lab re-evaluation. Comput Struct Biotechnol J 2023; 21:2824-2836. [PMID: 37206618 PMCID: PMC10189096 DOI: 10.1016/j.csbj.2023.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Cancer presents as a highly heterogeneous disease with partly overlapping and partly distinct (epi)genetic characteristics. These characteristics determine inherent and acquired resistance, which need to be overcome for improving patient survival. In line with the global efforts in identifying druggable resistance factors, extensive preclinical research of the Cordes lab and others designated the cancer adhesome as a critical and general therapy resistance mechanism with multiple druggable cancer targets. In our study, we addressed pancancer cell adhesion mechanisms by connecting the preclinical datasets generated in the Cordes lab with publicly available transcriptomic and patient survival data. We identified similarly changed differentially expressed genes (scDEGs) in nine cancers and their corresponding cell models relative to normal tissues. Those scDEGs interconnected with 212 molecular targets from Cordes lab datasets generated during two decades of research on adhesome and radiobiology. Intriguingly, integrative analysis of adhesion associated scDEGs, TCGA patient survival and protein-protein network reconstruction revealed a set of overexpressed genes adversely affecting overall cancer patient survival and specifically the survival in radiotherapy-treated cohorts. This pancancer gene set includes key integrins (e.g. ITGA6, ITGB1, ITGB4) and their interconnectors (e.g. SPP1, TGFBI), affirming their critical role in the cancer adhesion resistome. In summary, this meta-analysis demonstrates the importance of the adhesome in general, and integrins together with their interconnectors in particular, as potentially conserved determinants and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Olegs Borodins
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Felix Broghammer
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry (IMB), Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany
| | - Nils Cordes
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), Institute of Radiooncology—OncoRay, 01328 Dresden, Germany
- German Cancer Consortium, Partner Site Dresden: German Cancer Research Center, 69120 Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
7
|
Novel Ground-Up 3D Multicellular Simulators for Synthetic Biology CAD Integrating Stochastic Gillespie Simulations Benchmarked with Topologically Variable SBML Models. Genes (Basel) 2023; 14:genes14010154. [PMID: 36672895 PMCID: PMC9859520 DOI: 10.3390/genes14010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
The elevation of Synthetic Biology from single cells to multicellular simulations would be a significant scale-up. The spatiotemporal behavior of cellular populations has the potential to be prototyped in silico for computer assisted design through ergonomic interfaces. Such a platform would have great practical potential across medicine, industry, research, education and accessible archiving in bioinformatics. Existing Synthetic Biology CAD systems are considered limited regarding population level behavior, and this work explored the in silico challenges posed from biological and computational perspectives. Retaining the connection to Synthetic Biology CAD, an extension of the Infobiotics Workbench Suite was considered, with potential for the integration of genetic regulatory models and/or chemical reaction networks through Next Generation Stochastic Simulator (NGSS) Gillespie algorithms. These were executed using SBML models generated by in-house SBML-Constructor over numerous topologies and benchmarked in association with multicellular simulation layers. Regarding multicellularity, two ground-up multicellular solutions were developed, including the use of Unreal Engine 4 contrasted with CPU multithreading and Blender visualization, resulting in a comparison of real-time versus batch-processed simulations. In conclusion, high-performance computing and client-server architectures could be considered for future works, along with the inclusion of numerous biologically and physically informed features, whilst still pursuing ergonomic solutions.
Collapse
|
8
|
Merino-Casallo F, Gomez-Benito MJ, Hervas-Raluy S, Garcia-Aznar JM. Unravelling cell migration: defining movement from the cell surface. Cell Adh Migr 2022; 16:25-64. [PMID: 35499121 PMCID: PMC9067518 DOI: 10.1080/19336918.2022.2055520] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
Cell motility is essential for life and development. Unfortunately, cell migration is also linked to several pathological processes, such as cancer metastasis. Cells' ability to migrate relies on many actors. Cells change their migratory strategy based on their phenotype and the properties of the surrounding microenvironment. Cell migration is, therefore, an extremely complex phenomenon. Researchers have investigated cell motility for more than a century. Recent discoveries have uncovered some of the mysteries associated with the mechanisms involved in cell migration, such as intracellular signaling and cell mechanics. These findings involve different players, including transmembrane receptors, adhesive complexes, cytoskeletal components , the nucleus, and the extracellular matrix. This review aims to give a global overview of our current understanding of cell migration.
Collapse
Affiliation(s)
- Francisco Merino-Casallo
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Silvia Hervas-Raluy
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Jose Manuel Garcia-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
9
|
Zhang X, van Rijt S. 2D biointerfaces to study stem cell-ligand interactions. Acta Biomater 2021; 131:80-96. [PMID: 34237424 DOI: 10.1016/j.actbio.2021.06.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
Stem cells have great potential in the field of tissue engineering and regenerative medicine due to their inherent regenerative capabilities. However, an ongoing challenge within their clinical translation is to elicit or predict the desired stem cell behavior once transplanted. Stem cell behavior and function are regulated by their interaction with biophysical and biochemical signals present in their natural environment (i.e., stem cell niches). To increase our understanding about the interplay between stem cells and their resident microenvironments, biointerfaces have been developed as tools to study how these substrates can affect stem cell behaviors. This article aims to review recent developments on fabricating cell-instructive interfaces to control cell adhesion processes towards directing stem cell behavior. After an introduction on stem cells and their natural environment, static surfaces exhibiting predefined biochemical signals to probe the effect of chemical features on stem cell behaviors are discussed. In the third section, we discuss more complex dynamic platforms able to display biochemical cues with spatiotemporal control using on-off ligand display, reversible ligand display, and ligand mobility. In the last part of the review, we provide the reader with an outlook on future designs of biointerfaces. STATEMENT OF SIGNIFICANCE: Stem cells have great potential as treatments for many degenerative disorders prevalent in our aging societies. However, an ongoing challenge within their clinical translation is to promote stem cell mediated regeneration once they are transplanted in the body. Stem cells reside within our bodies where their behavior and function are regulated by interactions with their natural environment called the stem cell niche. To increase our understanding about the interplay between stem cells and their niche, 2D materials have been developed as tools to study how specific signals can affect stem cell behaviors. This article aims to review recent developments on fabricating cell-instructive interfaces to control cell adhesion processes towards directing stem cell behavior.
Collapse
|
10
|
Karagöz Z, Geuens T, LaPointe VLS, van Griensven M, Carlier A. Win, Lose, or Tie: Mathematical Modeling of Ligand Competition at the Cell-Extracellular Matrix Interface. Front Bioeng Biotechnol 2021; 9:657244. [PMID: 33996781 PMCID: PMC8117103 DOI: 10.3389/fbioe.2021.657244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/07/2021] [Indexed: 12/19/2022] Open
Abstract
Integrin transmembrane proteins conduct mechanotransduction at the cell–extracellular matrix (ECM) interface. This process is central to cellular homeostasis and therefore is particularly important when designing instructive biomaterials and organoid culture systems. Previous studies suggest that fine-tuning the ECM composition and mechanical properties can improve organoid development. Toward the bigger goal of fully functional organoid development, we hypothesize that resolving the dynamics of ECM–integrin interactions will be highly instructive. To this end, we developed a mathematical model that enabled us to simulate three main interactions, namely integrin activation, ligand binding, and integrin clustering. Different from previously published computational models, we account for the binding of more than one type of ligand to the integrin. This competition between ligands defines the fate of the system. We have demonstrated that an increase in the initial concentration of ligands does not ensure an increase in the steady state concentration of ligand-bound integrins. The ligand with higher binding rate occupies more integrins at the steady state than does the competing ligand. With cell type specific, quantitative input on integrin-ligand binding rates, this model can be used to develop instructive cell culture systems.
Collapse
Affiliation(s)
- Zeynep Karagöz
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Thomas Geuens
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Vanessa L S LaPointe
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Aurélie Carlier
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| |
Collapse
|